You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification |
---|
YMDB ID | YMDB00364 |
---|
Name | L-Tyrosine |
---|
Species | Saccharomyces cerevisiae |
---|
Strain | Baker's yeast |
---|
Description | Tyrosine (abbreviated as Tyr or Y) is an alpha-amino acid. The L-isomer is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. It is classified as a nonpolar, aromatic amino acid, because of the hydrophobic nature of the phenol side chain. L-Tyrosine is an electrically neutral amino acid. The word 'tyrosine' is from the Greek tyri, meaning cheese, as it was first discovered in 1846 by German chemist Justus von Liebig in the protein casein from cheese. Aside from being a proteogenic amino acid, tyrosine has a special role by virtue of the phenol functionality. It occurs in proteins that are part of signal transduction processes. It functions as a receiver of phosphate groups that are transferred by way of protein kinases (so-called receptor tyrosine kinases). Phosphorylation of the hydroxyl group changes the activity of the target protein. Tyrosine is produced via prephenate, an intermediate on the shikimate pathway. Prephenate is oxidatively decarboxylated with retention of the hydroxyl group to give p-hydroxyphenylpyruvate, which is transaminated using glutamate as the nitrogen source to give tyrosine and alpha-ketoglutarate. In yeast, the biosynthesis of phenylalanine, tyrosine, and tryptophan proceeds via a common pathway to chorismate, at which point the pathway branches. One branch proceeds to phenylalanine and tyrosine, and the other to tryptophan. The phenylalanine and tyrosine branch has one reaction in common, rearrangement of chorismate to prephenate, at which point, the pathway branches again to either phenylalanine or tyrosine. S. cerevisiae, similar to E. coli, synthesizes phenylalanine and tyrosine via the intermediate 4-hydroxyphenylpyruvate and phenylpyruvate, respectively. Aromatic amino acid biosynthesis in S. cerevisiae is controlled by a combination of feedback inhibition, activation of enzyme activity, and regulation of enzyme synthesis. The carbon flow through the pathways is regulated primarily at the initial step and the branching points by the terminal end-products. The initial step of chorismate biosynthesis can be catalyzed by two isoenzymes Aro3p or Aro4p, whereby Aro3p is inhibited by phenylalanine, and Aro4p by tyrosine. The first step in the phenylalanine-tyrosine branch is feedback inhibited by tyrosine and activated by tryptophan. S. cerevisiae degrade the aromatic amino acids (tryptophan, phenylalanine, and tyrosine) via the Ehrlich pathway. This pathway consists of 3 steps: 1) deamination of the amino acid to the corresponding alpha-keto acid; 2) decarboxylation of the resulting alpha-keto acid to the respective aldehyde; and, 3) reduction of the aldehyde to form the corresponding long chain or complex alcohol, known as a fusel alcohol or fusel oil. Fusel alcohols are important flavor and aroma compounds in yeast-fermented food products and beverages. Aro10p appears to be the primary decarboxylase catalyzing the second step in phenylalanine degradation. Although Vulrahan et. al. (2003) found that THI3 does not encode an active phenylpyruvate decarboxylase, they found Thi3p was required in conjunction with one of the pyruvate decarboxylases Pdc1p, Pdc5p or Pdc6p for the ARO10-independent decarboxylase activity. The main uptake systems for utilizing aromatic amino acids appear to be Gap1p, a general amino acid permease, and Wap1p, an inducible amino acid permease with wide substrate specificity. |
---|
Structure | |
---|
Synonyms | - (-)-a-Amino-p-hydroxyhydrocinnamate
- (-)-a-Amino-p-hydroxyhydrocinnamic acid
- (-)-alpha-Amino-p-hydroxyhydrocinnamate
- (-)-alpha-Amino-p-hydroxyhydrocinnamic acid
- (S)-(-)-Tyrosine
- (S)-2-Amino-3-(p-hydroxyphenyl)propionate
- (S)-2-Amino-3-(p-hydroxyphenyl)propionic acid
- (S)-3-(p-Hydroxyphenyl)alanine
- (S)-a-amino-4-hydroxy-Benzenepropanoate
- (S)-a-amino-4-hydroxy-Benzenepropanoic acid
- (S)-a-Amino-4-hydroxybenzenepropanoate
- (S)-a-Amino-4-hydroxybenzenepropanoic acid
- (S)-alpha-amino-4-hydroxy-Benzenepropanoate
- (S)-alpha-amino-4-hydroxy-Benzenepropanoic acid
- (S)-alpha-Amino-4-hydroxybenzenepropanoate
- (S)-alpha-Amino-4-hydroxybenzenepropanoic acid
- (S)-Tyrosine
- 2-amino-3-(4-hydroxyphen yl)-2-amino-3-(4-hydroxyphenyl)-Propanoate
- 2-amino-3-(4-hydroxyphen yl)-2-amino-3-(4-hydroxyphenyl)-Propanoic acid
- 3-(4-Hydroxyphenyl)-L-alanine
- 4-hydroxy-L-Phenylalanine
- Benzenepropanoate
- Benzenepropanoic acid
- L-p-Tyrosine
- L-tyrosine
- p-Tyrosine
- Tyr
- Tyrosine
- (2S)-2-Amino-3-(4-hydroxyphenyl)propanoic acid
- L-Tyrosin
- Y
- (-)-Α-amino-p-hydroxyhydrocinnamate
- (-)-Α-amino-p-hydroxyhydrocinnamic acid
- (2S)-2-Amino-3-(4-hydroxyphenyl)propanoate
- (S)-Α-amino-4-hydroxybenzenepropanoate
- (S)-Α-amino-4-hydroxybenzenepropanoic acid
- L Tyrosine
- Tyrosine, L-isomer
- Tyrosine, L isomer
- Para tyrosine
- Para-tyrosine
|
---|
CAS number | 60-18-4 |
---|
Weight | Average: 181.1885 Monoisotopic: 181.073893223 |
---|
InChI Key | OUYCCCASQSFEME-QMMMGPOBSA-N |
---|
InChI | InChI=1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1 |
---|
IUPAC Name | (2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid |
---|
Traditional IUPAC Name | L-tyrosine |
---|
Chemical Formula | C9H11NO3 |
---|
SMILES | [H]OC(=O)[C@@]([H])(N([H])[H])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Tyrosine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Tyrosine or derivatives
- Phenylalanine or derivatives
- 3-phenylpropanoic-acid
- Alpha-amino acid
- Amphetamine or derivatives
- L-alpha-amino acid
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- Aralkylamine
- Monocyclic benzene moiety
- Benzenoid
- Amino acid
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Organic oxide
- Organooxygen compound
- Organonitrogen compound
- Amine
- Primary aliphatic amine
- Organic nitrogen compound
- Carbonyl group
- Organopnictogen compound
- Organic oxygen compound
- Hydrocarbon derivative
- Primary amine
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Charge | 0 |
---|
Melting point | 343 °C |
---|
Experimental Properties | Property | Value | Reference |
---|
Water Solubility | 0.479 mg/mL at 25 oC [SEIDELL,A (1941)] | PhysProp | LogP | -2.26 [HANSCH,C ET AL. (1995)] | PhysProp |
|
---|
Predicted Properties | |
---|
Biological Properties |
---|
Cellular Locations | - extracellular
- mitochondrion
- peroxisome
- vacuole
- cytoplasm
|
---|
Organoleptic Properties | |
---|
SMPDB Pathways | |
---|
KEGG Pathways | Cyanoamino acid metabolism | ec00460 |  | Phenylalanine metabolism | ec00360 |  | Phenylalanine, tyrosine and tryptophan biosynthesis | ec00400 |  | Thiamine metabolism | ec00730 |  | Tyrosine metabolism | ec00350 |  |
|
---|
SMPDB Reactions | |
---|
KEGG Reactions | |
---|
Concentrations |
---|
Intracellular Concentrations | Intracellular Concentration | Substrate | Growth Conditions | Strain | Citation |
---|
283 ± 6 µM | YPD media | aerobic | Baker's yeast | PMID: 7654310 | 170 ± 3 µM | YPG media | aerobic | Baker's yeast | PMID: 7654310 | 340 ± 7 µM | SD media | aerobic | Baker's yeast | PMID: 7654310 | 453 ± 9 µM | SG media | aerobic | Baker's yeast | PMID: 7654310 | 1019 ± 21 µM | M (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 4019 ± 80 µM | MA (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 283 ± 6 µM | MB (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 2604 ± 52 µM | MAB (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 883 ± 44 µM | YEB media with 0.5 mM glucose | aerobic | Baker's yeast | Experimentally Determined Not Available | 250 ± 33 µM | Synthetic medium with 20 g/L glucose | aerobic | Baker's yeast | PMID: 12584756 | Conversion Details Here |
|
---|
Extracellular Concentrations | Intracellular Concentration | Substrate | Growth Conditions | Strain | Citation |
---|
1297 ± 143 µM | hops, malted barley | anaerobic | Baker's yeast | PMID: 16448171 | Conversion Details Here |
|
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | View |
---|
GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-014i-0690000000-cbbf40bb26fc84f2aead | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-014i-0890000000-ca45f993f95c8b0cee44 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-014i-0890000000-5749069211ba15d713ef | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-00xr-9240000000-2c87373c0d964e0edef5 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-014i-0890000000-848b2a4f247a0b3f14e8 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-00xr-9450000000-6d4550940f4dde6f18ff | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-MS (2 TMS) | splash10-004i-1910000000-5cc19cad5dc24b3b9b11 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-MS (3 TMS) | splash10-014i-1790000000-de22041357aadf60a06b | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-014i-0690000000-cbbf40bb26fc84f2aead | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-014i-0890000000-ca45f993f95c8b0cee44 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-014i-0890000000-5749069211ba15d713ef | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-00xr-9240000000-2c87373c0d964e0edef5 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-014i-0890000000-848b2a4f247a0b3f14e8 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-QQ (Non-derivatized) | splash10-0udi-3319000000-1d3d28a67f82366fff22 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-00xr-9450000000-6d4550940f4dde6f18ff | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-MS (Non-derivatized) | splash10-004i-1910000000-5cc19cad5dc24b3b9b11 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-MS (Non-derivatized) | splash10-014i-1790000000-de22041357aadf60a06b | JSpectraViewer | MoNA | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | splash10-052r-4900000000-9be1412408207db5df4e | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positive | splash10-05fr-9750000000-937b6ee7a745865ee7ee | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_1_1) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_1_3) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_2_2) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, Positive | Not Available | JSpectraViewer | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated) | splash10-01p9-0900000000-580de2c16cd24559cd5c | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated) | splash10-0006-9400000000-f233fbc6c58236ee4aeb | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated) | splash10-002f-9100000000-8b5e12eba034bcfdf8a1 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0920000000-b43356ad3da227b488cb | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-014i-0900000000-c04f0be6515621dda5ac | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-0900000000-3ed8b68bfade9194763b | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0udi-0900000000-fe6a1ce69851a8c5db00 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0900000000-aafdcea07be221817fd4 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0002-0900000000-66a5b9a0a48bdc0a2b47 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-014i-0900000000-13eb4252ca23455a58da | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-014i-0900000000-fb85798746829bac3f3d | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-03e9-0839226000-5504e667281c746669ec | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-03di-0900000000-f65cb3ad2fa730c922f7 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-001i-0900000000-a9276fe43ef61b4693e6 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-0a59-0039210000-21b4bd9870bf4965a6d1 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-001i-0848491200-aae99eb0b66dd1c7036d | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-03di-0900000000-4104a2ca5d5ef5f22f6d | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-001i-0900000000-f309996d57a95c719deb | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative | splash10-03di-0013090000-112cd9c2eea42dbc079b | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative | splash10-001i-0900000000-c7f95918d936586f633d | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative | splash10-03yi-1900000000-d1682546c1e0893c71e4 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative | splash10-014i-2900000000-a0cc78ed35e56dd812a5 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative | splash10-00kf-9500000000-d3f399f5dd10e338e25a | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative | splash10-0006-9200000000-8acd8d370f194bfe28ed | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive | splash10-001i-0900000000-6b26ce2f5b326ace12a4 | JSpectraViewer | MoNA | MS | Mass Spectrum (Electron Ionization) | splash10-0a4i-3900000000-7a26097fda66f2f445b5 | JSpectraViewer | MoNA | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 2D NMR | [1H,1H] 2D NMR Spectrum | Not Available | JSpectraViewer | 2D NMR | [1H,13C] 2D NMR Spectrum | Not Available | JSpectraViewer |
|
---|
References |
---|
References: | - Martinez-Force, E., Benitez, T. (1995). "Effects of varying media, temperature, and growth rates on the intracellular concentrations of yeast amino acids." Biotechnol Prog 11:386-392.7654310
- UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
- Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
- Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
- Vaseghi, S., Baumeister, A., Rizzi, M., Reuss, M. (1999). "In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae." Metab Eng 1:128-140.10935926
- Almeida, C., Duarte, I. F., Barros, A., Rodrigues, J., Spraul, M., Gil, A. M. (2006). "Composition of beer by 1H NMR spectroscopy: effects of brewing site and date of production." J Agric Food Chem 54:700-706.16448171
- Hans, M. A., Heinzle, E., Wittmann, C. (2003). "Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae." Biotechnol Bioeng 82:143-151.12584756
- Nookaew, I., Jewett, M. C., Meechai, A., Thammarongtham, C., Laoteng, K., Cheevadhanarak, S., Nielsen, J., Bhumiratana, S. (2008). "The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism." BMC Syst Biol 2:71.18687109
- Yang, Z., Huang, J., Geng, J., Nair, U., Klionsky, D. J. (2006). "Atg22 recycles amino acids to link the degradative and recycling functions of autophagy." Mol Biol Cell 17:5094-5104.17021250
- Shimazu, M., Sekito, T., Akiyama, K., Ohsumi, Y., Kakinuma, Y. (2005). "A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae." J Biol Chem 280:4851-4857.15572352
- Briza, P., Kalchhauser, H., Pittenauer, E., Allmaier, G., Breitenbach, M. (1996). "N,N'-Bisformyl dityrosine is an in vivo precursor of the yeast ascospore wall." Eur J Biochem 239:124-131.8706696
- Iraqui, I., Vissers, S., Cartiaux, M., Urrestarazu, A. (1998). "Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily." Mol Gen Genet 257:238-248.9491083
- Castrillo, J. I., Zeef, L. A., Hoyle, D. C., Zhang, N., Hayes, A., Gardner, D. C., Cornell, M. J., Petty, J., Hakes, L., Wardleworth, L., Rash, B., Brown, M., Dunn, W. B., Broadhurst, D., O'Donoghue, K., Hester, S. S., Dunkley, T. P., Hart, S. R., Swainston, N., Li, P., Gaskell, S. J., Paton, N. W., Lilley, K. S., Kell, D. B., Oliver, S. G. (2007). "Growth control of the eukaryote cell: a systems biology study in yeast." J Biol 6:4.17439666
|
---|
Synthesis Reference: | Enei, Hitoshi; Matsui, Hiroshi; Yamashita, Koichi; Okumura, Shinji; Yamada, Hideaki. Microbiological synthesis of L-tyrosine and 3,4-dihydroxyphenyl-L-alanine. I. Distribution of tyrosine phenol lyase in microorganisms. Agricultural and Biological Chemist |
---|
External Links: | |
---|