You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00114
NameSulfite
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionA sulfite (SO32-) is a salt of sulfurous acid (H2SO3). Sulfite is an intermediate in the sulfate reduction (assimilatory) pathway which reduces sulfate to hydrogen sulfide, the required form for sulfur assimilation into biosynthetic pathways. Sulfites occur naturally in a number of foods and beverages and in all wines to some extent. Sulfites are commonly introduced to arrest fermentation at a desired time, and may also be added to wine as preservatives to prevent spoilage and oxidation at several stages of the winemaking. [Biocyc SO4ASSIM-PWY]
Structure
Thumb
Synonyms
  • Bisulfite
  • Sulfite dianion
  • Sulfite ion
  • Sulfite ions
  • Sulfonate
  • Sulfur trioxide
  • Sulfuric anhydride
  • Sulphite
  • trioxosulfate(2-)
  • trioxosulfate(IV)
  • [SO(OH)2]
  • Acide sulfureux
  • Acido sulfuroso
  • H2SO3
  • S(O)(OH)2
  • Schweflige saeure
  • Sulphurous acid
  • Sulfurous acid
  • Acide sulphureux
  • Acido sulphuroso
  • Sulfur dioxide solution
  • Sulfuric(IV) acid (H2SO3)
  • Hydrogen sulfite
  • Sulfite
CAS number14265-45-3
WeightAverage: 80.063
Monoisotopic: 79.956814556
InChI KeyLSNNMFCWUKXFEE-UHFFFAOYSA-L
InChIInChI=1S/H2O3S/c1-4(2)3/h(H2,1,2,3)/p-2
IUPAC Namesulfurous acid
Traditional IUPAC Namesulfurous acid
Chemical FormulaO3S
SMILES[O-]S([O-])=O
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as non-metal sulfites. These are inorganic non-metallic compounds containing a sulfite as its largest oxoanion.
KingdomInorganic compounds
Super ClassHomogeneous non-metal compounds
ClassNon-metal oxoanionic compounds
Sub ClassNon-metal sulfites
Direct ParentNon-metal sulfites
Alternative Parents
Substituents
  • Non-metal sulfite
  • Inorganic oxide
Molecular FrameworkNot Available
External Descriptors
Physical Properties
StateSolid
Charge0
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water Solubility558.5 mg/mL [sodium salt, HMP experimental]PhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
logP-1.2ChemAxon
pKa (Strongest Acidic)1.7ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity12.33 m³·mol⁻¹ChemAxon
Polarizability5.76 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • extracellular
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
Sulfur metabolismPW002483 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Cysteine and methionine metabolismec00270 Map00270
Sulfur metabolismec00920 Map00920
Taurine and hypotaurine metabolismec00430 Map00430
SMPDB Reactions
Phosphoadenosine phosphosulfate + reduced thioredoxin → Sulfite + oxidized thioredoxin + hydron + Adenosine 3',5'-diphosphate
Taurine + Oxoglutaric acid + oxygenSulfite + Succinic acid + Carbon dioxide + hydron + aminoacetaldehyde
alkylsulfonate + FMNH2 + oxygen → Betaine aldehyde + Sulfite + Flavin Mononucleotide + water + hydron
Cyanide + ThiosulfateThiocyanate + Sulfite + hydron
Sulfite + NADPH + hydronwater + NADP + Hydrogen sulfide
KEGG Reactions
thioredoxin dithiol + Phosphoadenosine phosphosulfateAdenosine 3',5'-diphosphate + Sulfite + thioredoxin disulfide + hydron
NADP + water + Hydrogen sulfidehydron + Sulfite + NADPH
Oxoglutaric acid + Taurine + oxygenSulfite + Carbon dioxide + hydron + aminoacetaldehyde + Succinic acid
Concentrations
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-001i-9000000000-6e01fa26fbebd72ad6acJSpectraViewer
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableJSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0ue9-9000000000-f7ae469c0c0eb80e5bb9JSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-001i-9300000000-8bbaba610a5e9ef617feJSpectraViewer | MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0udi-9300000000-460847a9238bf81b4b9cJSpectraViewer | MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-001i-9000000000-0d5af2beca96b50eac8aJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001i-9000000000-42884a642ace9e213e65JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-01q9-9000000000-5357c61e80aaefe2133cJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-9000000000-a7737b78e8d12bda4559JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-9000000000-1920e0308a2b8b74a3f4JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001i-9000000000-1920e0308a2b8b74a3f4JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-9000000000-a6fb8cd4d3dc149be309JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-9000000000-a6fb8cd4d3dc149be309JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-001i-9000000000-a6fb8cd4d3dc149be309JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-001i-9000000000-95d8eaf2b829c52ced6cJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-9000000000-2c4a3db8921d94d7f526JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03di-9000000000-2c4a3db8921d94d7f526JSpectraViewer
References
References:
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Lederer, F. (1978). "Sulfite binding to a flavodehydrogenase, cytochrome b2 from baker's yeast." Eur J Biochem 88:425-431.357149
  • Thomas, D., Barbey, R., Surdin-Kerjan, Y. (1990). "Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene." J Biol Chem 265:15518-15524.2203779
  • Hansen, J., Muldbjerg, M., Cherest, H., Surdin-Kerjan, Y. (1997). "Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes." FEBS Lett 401:20-24.9003798
  • Hogan, D. A., Auchtung, T. A., Hausinger, R. P. (1999). "Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae." J Bacteriol 181:5876-5879.10482536
Synthesis Reference:Dorain, P. B.; Von Raben, K. U.; Chang, R. K.; Laube, B. L. Catalytic formation of sulfite and sulfate ions from sulfur dioxide on silver observed by surface-enhanced Raman scattering. Chemical Physics Letters (1981), 84(2), 405-9.
External Links:
ResourceLink
CHEBI ID17359
HMDB IDHMDB00240
Pubchem Compound ID1099
Kegg IDC00094
ChemSpider ID1068
FOODB IDFDB013391
WikipediaSulfite
BioCyc IDSO3

Enzymes

General function:
Involved in thiosulfate sulfurtransferase activity
Specific function:
Thiosulfate + cyanide = sulfite + thiocyanate
Gene Name:
Not Available
Uniprot ID:
Q08686
Molecular weight:
34218.60156
Reactions
Thiosulfate + cyanide → sulfite + thiocyanate.
General function:
Inorganic ion transport and metabolism
Specific function:
Thiosulfate + cyanide = sulfite + thiocyanate
Gene Name:
FMP31
Uniprot ID:
Q08742
Molecular weight:
16697.19922
Reactions
Thiosulfate + cyanide → sulfite + thiocyanate.
General function:
Inorganic ion transport and metabolism
Specific function:
Thiosulfate + cyanide = sulfite + thiocyanate
Gene Name:
Not Available
Uniprot ID:
Q12305
Molecular weight:
15413.2002
Reactions
Thiosulfate + cyanide → sulfite + thiocyanate.
General function:
Involved in oxidoreductase activity
Specific function:
Acts as a alpha-ketoglutarate-dependent dioxygenase active on sulfonates. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being isethionate and taurocholate
Gene Name:
JLP1
Uniprot ID:
Q12358
Molecular weight:
46982.30078
Reactions
General function:
Involved in iron ion binding
Specific function:
Catalyzes the reduction of sulfite to sulfide, one of several activities required for the biosynthesis of L-cysteine from sulfate
Gene Name:
ECM17
Uniprot ID:
P47169
Molecular weight:
161218.0
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O → sulfite + 3 NADPH.
General function:
Involved in phosphoadenylyl-sulfate reductase (thioredoxin) activity
Specific function:
The NADP dependent reduction of PAPS into sulfite involves thioredoxin which probably plays the role of a thiol carrier
Gene Name:
MET16
Uniprot ID:
P18408
Molecular weight:
30380.09961
Reactions
Adenosine 3',5'-bisphosphate + sulfite + thioredoxin disulfide → 3'-phosphoadenylyl sulfate + thioredoxin.
General function:
Involved in oxidoreductase activity
Specific function:
This enzyme catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate
Gene Name:
MET10
Uniprot ID:
P39692
Molecular weight:
114827.0
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O → sulfite + 3 NADPH.

Transporters

General function:
Involved in transmembrane transport
Specific function:
Involved in efflux of free sulfite. Mutations in the SSU1 gene cause sensitivity to sulfite
Gene Name:
SSU1
Uniprot ID:
P41930
Molecular weight:
52544.69922