You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification |
---|
YMDB ID | YMDB00038 |
---|
Name | L-Isoleucine |
---|
Species | Saccharomyces cerevisiae |
---|
Strain | Baker's yeast |
---|
Description | Isoleucine (abbreviated as Ile or I) is an alpha-amino acid. The L-isomer is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. It is classified as a nonpolar branched chain amino acid, because of the hydrophobic nature of the branched alkyl side chain. Together with threonine, isoleucine is one of two common amino acids that have a chiral side chain. it is synthesized via several steps, starting from pyruvic acid and alpha-ketoglutarate. Enzymes involved in this biosynthesis include: Acetolactate synthase (also known as acetohydroxy acid synthase), Acetohydroxy acid isomeroreductase, Dihydroxyacid dehydratase and Valine aminotransferase. S. cerevisiae degrade the branched-chain amino acids (valine, leucine, and iso-leucine) via the Ehrlich pathway. This pathway consists of 3 steps: 1) deamination of the amino acid to the corresponding alpha-keto acid; 2) decarboxylation of the resulting alpha-keto acid to the respective aldehyde; and, 3) reduction of the aldehyde to form the corresponding long chain or complex alcohol, known as a fusel alcohol or fusel oil. Fusel alcohols are important flavor and aroma compounds in yeast-fermented food products and beverages. Each of the three steps in branched-chain amino acid degradation can be catalyzed by more than one isozyme; which enzyme is used appears to depend on the amino acid, the carbon source and the stage of growth of the culture. The initial transamination step in isoleucine degradation can be catalyzed by either of the branched-chain amino acid transaminases BAT1 (mitochondrial) or BAT2 (cytosolic). The subsequent decarboxylation step can be catalyzed by any one of the five decarboxylases (Pdc1p, Pdc5p, Pdc6p, Thi3p, and Aro10p) and the final step can be catalyzed by any one of six alcohol dehydrogenases (Adh1p, Adh2p, Adh3p, Adh4p, Adh5p, and Sfa1p). |
---|
Structure | |
---|
Synonyms | - (2S,3S)-2-amino-3-methyl-Pentanoate
- (2S,3S)-2-amino-3-methyl-Pentanoic acid
- (2S,3S)-2-Amino-3-methylpentanoate
- (2S,3S)-2-Amino-3-methylpentanoic acid
- (2S,3S)-a-Amino-b-methyl-n-valerate
- (2S,3S)-a-Amino-b-methyl-n-valeric acid
- (2S,3S)-a-Amino-b-methylvalerate
- (2S,3S)-a-Amino-b-methylvaleric acid
- (2S,3S)-alph-Amino-beta-methylvalerate
- (2S,3S)-alph-Amino-beta-methylvaleric acid
- (2S,3S)-alpha-Amino-beta-merthyl-n-valerate
- (2S,3S)-alpha-Amino-beta-merthyl-n-valeric acid
- (2S,3S)-alpha-Amino-beta-merthylvalerate
- (2S,3S)-alpha-Amino-beta-merthylvaleric acid
- (2S,3S)-alpha-Amino-beta-methyl-n-valerate
- (2S,3S)-alpha-Amino-beta-methyl-n-valeric acid
- (2S,3S)-alpha-Amino-beta-methylvalerate
- (2S,3S)-alpha-Amino-beta-methylvaleric acid
- (S,S)-Isoleucine
- (S)-Isoleucine
- [S-(R*,R*)]-2-Amino-3-methylpentanoate
- [S-(R*,R*)]-2-Amino-3-methylpentanoic acid
- 2-Amino-3-methylpentanoate
- 2-Amino-3-methylpentanoic acid
- 2-Amino-3-methylvalerate
- 2-Amino-3-methylvaleric acid
- 2S,3S-Isoleucine
- a-amino-b-Methylvalerate
- a-amino-b-Methylvaleric acid
- Alloisoleucine
- alpha-amino-beta-Methylvalerate
- alpha-amino-beta-Methylvaleric acid
- erythro-L-Isoleucine
- I
- Ile
- iso-leucine
- Isoleucine
- Isoleucine, L isomer
- Isoleucine, L-isomer
- L-(+)-Isoleucine
- L-Ile
- L-Isomer isoleucine
- α-amino-β-methylvalerate
- α-amino-β-methylvaleric acid
- 2S-Amino-3S-methylpentanoate
- L-Isoleucine
|
---|
CAS number | 73-32-5 |
---|
Weight | Average: 131.1729 Monoisotopic: 131.094628665 |
---|
InChI Key | AGPKZVBTJJNPAG-WHFBIAKZSA-N |
---|
InChI | InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m0/s1 |
---|
IUPAC Name | (2S,3S)-2-amino-3-methylpentanoic acid |
---|
Traditional IUPAC Name | L-isoleucine |
---|
Chemical Formula | C6H13NO2 |
---|
SMILES | [H]OC(=O)[C@@]([H])(N([H])[H])[C@@]([H])(C([H])([H])[H])C([H])([H])C([H])([H])[H] |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as isoleucine and derivatives. Isoleucine and derivatives are compounds containing isoleucine or a derivative thereof resulting from reaction of isoleucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Isoleucine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Isoleucine or derivatives
- Alpha-amino acid
- L-alpha-amino acid
- Branched fatty acid
- Methyl-branched fatty acid
- Fatty acid
- Fatty acyl
- Amino acid
- Monocarboxylic acid or derivatives
- Carboxylic acid
- Organic oxide
- Organopnictogen compound
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Primary aliphatic amine
- Carbonyl group
- Organic oxygen compound
- Amine
- Organic nitrogen compound
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Charge | 0 |
---|
Melting point | 285.5 °C |
---|
Experimental Properties | Property | Value | Reference |
---|
Water Solubility | 34.4 mg/mL at 25 oC [YALKOWSKY,SH & DANNENFELSER,RM (1992)] | PhysProp | LogP | -1.70 [HANSCH,C ET AL. (1995)] | PhysProp |
|
---|
Predicted Properties | |
---|
Biological Properties |
---|
Cellular Locations | - extracellular
- mitochondrion
- vacuole
- cytoplasm
|
---|
Organoleptic Properties | |
---|
SMPDB Pathways | |
---|
KEGG Pathways | Valine, leucine and isoleucine biosynthesis | ec00290 | | Valine, leucine and isoleucine degradation | ec00280 | |
|
---|
SMPDB Reactions | |
---|
KEGG Reactions | |
---|
Concentrations |
---|
Intracellular Concentrations | Intracellular Concentration | Substrate | Growth Conditions | Strain | Citation |
---|
938 ± 19 µM | YPD media | aerobic | Baker's yeast | PMID: 7654310 | 156 ± 3 µM | YPG media | aerobic | Baker's yeast | PMID: 7654310 | 235 ± 5 µM | SD media | aerobic | Baker's yeast | PMID: 7654310 | 156 ± 3 µM | SG media | aerobic | Baker's yeast | PMID: 7654310 | 626 ± 12 µM | M (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 4535 ± 91 µM | MA (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 1173 ± 23 µM | MB (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 6177 ± 123 µM | MAB (molasses) | aerobic | Baker's yeast | PMID: 7654310 | 1359 ± 68 µM | YEB media with 0.5 mM glucose | aerobic | Baker's yeast | Experimentally Determined Not Available | 700 ± 67 µM | Synthetic medium with 20 g/L glucose | aerobic | Baker's yeast | PMID: 12584756 | Conversion Details Here |
|
---|
Extracellular Concentrations | Not Available |
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | View |
---|
GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-0a4i-0930000000-e78f845bb2a8d4736476 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-0a4i-0910000000-de9162d149073d0e2a37 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-0a4i-0920000000-599e61f8ccdb6525c7a9 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-0a4i-0910000000-742e44c426c0d6c2a9ac | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-05fr-8910000000-dbb33e0f02ac2ca5fedd | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0a4i-0920000000-37690f426455ac41e2c2 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0930000000-e78f845bb2a8d4736476 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0910000000-de9162d149073d0e2a37 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0920000000-599e61f8ccdb6525c7a9 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0910000000-742e44c426c0d6c2a9ac | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-QQ (Non-derivatized) | splash10-0udi-2392000000-74cca1eb265b8e3d7f43 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-05fr-8910000000-dbb33e0f02ac2ca5fedd | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-000i-9100000000-27891dff695c5db53796 | JSpectraViewer | MoNA | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-0a4i-0910000000-43ec1890f6dbd6aea657 | JSpectraViewer | MoNA | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | splash10-00b9-9100000000-40bc9ef43da5f18be883 | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positive | splash10-000i-9200000000-ae8694c0f3e4dcc608f9 | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | JSpectraViewer | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | JSpectraViewer | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated) | splash10-000i-9300000000-8a23b3e62231eb65f80f | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated) | splash10-00ko-9000000000-ac7e71578d7e1d0e8ce9 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated) | splash10-052f-9000000000-2586d4a089921dd977ed | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0900000000-5b11521ff6a631376d2b | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-9000000000-3c352f229e4067fcd489 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-9000000000-8a7ef48fc0c1b6f845c2 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0002-0920000000-2e11aa1c7a5defc386db | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0900000000-b63ac9cf06eda4c54a81 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-9000000000-e5b0c8c6b09f541d6dbf | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-9000000000-d89d16d5c2242e44ec63 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-9000000000-5de583142c7bdb381c8f | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative | splash10-001i-0900000000-8c75bde35c4a4073ee65 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative | splash10-001i-0900000000-233a9862f616afea2d17 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative | splash10-001i-1900000000-375f35065b82b13e6d6e | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative | splash10-00dl-9000000000-d0d4a9f90fe2aca74483 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative | splash10-0006-9000000000-0018f47571feaf232ff8 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive | splash10-001r-7900000000-278dc67396114be331ba | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive | splash10-000i-9000000000-e26c042aa6231eeca071 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive | splash10-014r-9000000000-b6c1752fd3fbccb3d1c5 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive | splash10-05mo-9000000000-0569c3162621252ed0a8 | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive | splash10-052f-9000000000-3d52b5d56d3fab45276e | JSpectraViewer | MoNA | LC-MS/MS | LC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positive | splash10-001i-0900000000-720554d58264a9cfdb67 | JSpectraViewer | MoNA | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0019-9500000000-00268b2694cde281641b | JSpectraViewer | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-000i-9000000000-4014793e17e0290790a4 | JSpectraViewer | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-0a4i-9000000000-eb9a97a14461e524e76e | JSpectraViewer | MS | Mass Spectrum (Electron Ionization) | splash10-004r-9000000000-34d4d4cb7042da231eb4 | JSpectraViewer | MoNA | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 1H NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 1D NMR | 13C NMR Spectrum | Not Available | JSpectraViewer | 2D NMR | [1H,1H] 2D NMR Spectrum | Not Available | JSpectraViewer | 2D NMR | [1H,13C] 2D NMR Spectrum | Not Available | JSpectraViewer |
|
---|
References |
---|
References: | - Martinez-Force, E., Benitez, T. (1995). "Effects of varying media, temperature, and growth rates on the intracellular concentrations of yeast amino acids." Biotechnol Prog 11:386-392.7654310
- UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
- Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
- Eden, A., Van Nedervelde, L., Drukker, M., Benvenisty, N., Debourg, A. (2001). "Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast." Appl Microbiol Biotechnol 55:296-300.11341309
- Freist, W., von der Haar, F., Cramer, F. (1981). "Isoleucyl-tRNA synthetase from Baker's yeast. Action of ATP analogs in pyrophosphate exchange and aminoacylation, two pathways of the aminoacylation depending on concentration of pyrophosphate." Eur J Biochem 119:151-164.6281001
- Hans, M. A., Heinzle, E., Wittmann, C. (2003). "Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae." Biotechnol Bioeng 82:143-151.12584756
- Nookaew, I., Jewett, M. C., Meechai, A., Thammarongtham, C., Laoteng, K., Cheevadhanarak, S., Nielsen, J., Bhumiratana, S. (2008). "The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism." BMC Syst Biol 2:71.18687109
- Yang, Z., Huang, J., Geng, J., Nair, U., Klionsky, D. J. (2006). "Atg22 recycles amino acids to link the degradative and recycling functions of autophagy." Mol Biol Cell 17:5094-5104.17021250
- Tzagoloff, A., Shtanko, A. (1995). "Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes." Eur J Biochem 230:582-586.7607232
- Kispal, G., Steiner, H., Court, D. A., Rolinski, B., Lill, R. (1996). "Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein." J Biol Chem 271:24458-24464.8798704
- Harris, C. L., Kolanko, C. J. (1995). "Aminoacyl-tRNA synthetase complex in Saccharomyces cerevisiae." Biochem J 309 ( Pt 1):321-324.7619074
- Castrillo, J. I., Zeef, L. A., Hoyle, D. C., Zhang, N., Hayes, A., Gardner, D. C., Cornell, M. J., Petty, J., Hakes, L., Wardleworth, L., Rash, B., Brown, M., Dunn, W. B., Broadhurst, D., O'Donoghue, K., Hester, S. S., Dunkley, T. P., Hart, S. R., Swainston, N., Li, P., Gaskell, S. J., Paton, N. W., Lilley, K. S., Kell, D. B., Oliver, S. G. (2007). "Growth control of the eukaryote cell: a systems biology study in yeast." J Biol 6:4.17439666
|
---|
Synthesis Reference: | Marvel, C. S. L-Isoleucine. Organic Syntheses (1941), 21 60-4. |
---|
External Links: | |
---|