You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
NameGlutamyl-tRNA synthetase, cytoplasmic
Synonyms
  • Glutamate--tRNA ligase
  • GluRS
  • P85
Gene NameGUS1
Enzyme Class
Biological Properties
General FunctionInvolved in nucleotide binding
Specific FunctionCatalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction:glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu)
Cellular LocationCytoplasm
SMPDB PathwaysNot Available
KEGG Pathways
Porphyrin and chlorophyll metabolismec00860 Map00860
SMPDB ReactionsNot Available
KEGG Reactions
Adenosine triphosphate + tRNA(Glu) + L-Glutamic acidAdenosine monophosphate + Pyrophosphate + Glu-tRNA(Glu)
Metabolites
YMDB IDNameView
YMDB00097Adenosine monophosphateShow
YMDB00109Adenosine triphosphateShow
YMDB00219PyrophosphateShow
YMDB00271L-Glutamic acidShow
GO Classification
Component
cell part
intracellular part
cytoplasm
Function
nucleotide binding
ligase activity
binding
nucleoside binding
purine nucleoside binding
glutamate-tRNA ligase activity
adenyl nucleotide binding
adenyl ribonucleotide binding
ATP binding
ligase activity, forming carbon-oxygen bonds
ligase activity, forming aminoacyl-tRNA and related compounds
catalytic activity
aminoacyl-tRNA ligase activity
Process
metabolic process
macromolecule metabolic process
cellular macromolecule metabolic process
RNA metabolic process
ncRNA metabolic process
biosynthetic process
tRNA metabolic process
tRNA aminoacylation
tRNA aminoacylation for protein translation
macromolecule biosynthetic process
cellular macromolecule biosynthetic process
translation
glutamyl-tRNA aminoacylation
Gene Properties
Chromosome Locationchromosome 7
LocusYGL245W
Gene Sequence>YGL245W GUS1 SGDID:S000003214, Chr VII from 39023-41149, Verified ORF, "Glutamyl-tRNA synthetase (GluRS), forms a complex with methionyl-tRNA synthetase (Mes1p) and Arc1p; complex formation increases the catalytic efficiency of both tRNA synthetases and e ATGCCATCTACCTTGACTATTAATGGAAAAGCCCCAATTGTGGCTTATGCTGAACTAATT GCTGCTCGTATTGTGAATGCGTTAGCTCCTAACTCCATAGCTATTAAGTTGGTGGACGAT AAGAAAGCACCTGCTGCCAAGCTCGATGATGCTACTGAAGATGTCTTCAACAAGATAACT AGCAAATTCGCCGCCATCTTCGATAATGGTGATAAAGAGCAAGTTGCTAAATGGGTTAAT CTGGCCCAAAAGGAATTAGTTATCAAGAACTTTGCTAAATTATCACAATCATTGGAAACA CTAGATTCTCAATTGAACCTAAGAACCTTTATTCTTGGCGGCTTGAAGTATTCTGCCGCT GATGTAGCATGTTGGGGTGCTTTAAGATCCAATGGTATGTGCGGTTCCATCATCAAGAAC AAGGTTGATGTTAACGTTTCTCGTTGGTACACTTTGTTAGAAATGGATCCCATCTTCGGC GAAGCTCACGATTTCTTGAGCAAATCTTTACTAGAATTAAAGAAAAGTGCTAATGTGGGT AAGAAGAAGGAAACTCACAAGGCTAACTTTGAAATTGATTTGCCAGATGCCAAAATGGGT GAAGTCGTCACTCGTTTCCCACCTGAACCTTCTGGATACTTACATATTGGACATGCCAAA GCTGCCTTGTTGAACCAATATTTTGCTCAAGCTTACAAGGGTAAGTTGATTATTAGATTC GATGACACCAACCCATCGAAGGAAAAGGAAGAATTCCAAGACTCTATTTTGGAAGATTTG GATTTATTAGGAATCAAGGGTGATAGAATAACCTACTCATCTGACTACTTCCAAGAAATG TACGACTACTGTGTTCAAATGATCAAGGATGGTAAAGCTTACTGTGACGACACTCCAACT GAAAAGATGAGAGAAGAACGTATGGATGGTGTTGCTTCTGCCAGAAGAGATCGTTCTGTT GAAGAGAACTTAAGAATTTTTACCGAAGAAATGAAAAACGGTACTGAAGAAGGTTTGAAG AACTGTGTTCGTGCCAAGATCGATTACAAGGCTTTGAACAAGACTCTAAGAGATCCTGTC ATTTACAGATGTAATCTAACCCCTCACCACAGAACCGGATCAACTTGGAAGATCTACCCA ACTTATGATTTCTGTGTCCCAATTGTTGATGCTATTGAAGGTGTTACCCACGCTTTACGT ACCATTGAATATAGAGACCGTAACGCTCAATATGATTGGATGTTACAAGCTTTGCGTTTG AGAAAAGTCCATATTTGGGATTTCGCTCGTATCAATTTCGTTAGAACCTTGTTGTCTAAG AGAAAGTTACAATGGATGGTTGACAAGGACTTGGTCGGAAATTGGGACGATCCAAGGTTC CCAACTGTCAGGGGTGTGAGAAGAAGAGGTATGACTGTCGAAGGTTTGAGGAACTTCGTC TTATCCCAAGGTCCATCCAGAAATGTCATTAACTTGGAATGGAACTTGATCTGGGCTTTC AACAAGAAGGTCATTGATCCAATTGCTCCAAGACACACTGCTATCGTCAACCCAGTTAAA ATCCACTTGGAAGGCTCCGAAGCTCCACAAGAACCAAAGATTGAAATGAAACCAAAACAC AAGAAAAACCCAGCTGTGGGCGAAAAGAAAGTCATTTACTACAAAGACATTGTTGTCGAC AAAGATGATGCTGACGTCATCAATGTTGATGAAGAAGTCACTTTAATGGACTGGGGTAAT GTCATTATTACTAAAAAGAATGACGATGGTTCTATGGTTGCCAAATTGAATTTGGAAGGT GATTTCAAAAAGACCAAGCACAAGTTGACTTGGTTAGCTGATACTAAAGATGTCGTCCCT GTTGATTTAGTTGACTTCGACCATTTGATTACCAAGGACAGATTGGAAGAAGACGAAAGT TTCGAAGATTTCTTGACTCCTCAAACAGAATTCCACACGGATGCCATTGCTGACTTGAAT GTTAAGGATATGAAGATTGGTGATATCATCCAATTCGAAAGAAAGGGCTACTACAGATTG GATGCTTTACCCAAGGATGGTAAGCCATATGTCTTTTTTACCATCCCAGATGGTAAATCT GTCAACAAGTATGGTGCAAAGAAATAA
Protein Properties
Pfam Domain Function
Protein Residues708
Protein Molecular Weight80842.0
Protein Theoretical pI7.61
Signalling Regions
  • None
Transmembrane Regions
  • None
Protein Sequence>Glutamyl-tRNA synthetase, cytoplasmic MPSTLTINGKAPIVAYAELIAARIVNALAPNSIAIKLVDDKKAPAAKLDDATEDVFNKIT SKFAAIFDNGDKEQVAKWVNLAQKELVIKNFAKLSQSLETLDSQLNLRTFILGGLKYSAA DVACWGALRSNGMCGSIIKNKVDVNVSRWYTLLEMDPIFGEAHDFLSKSLLELKKSANVG KKKETHKANFEIDLPDAKMGEVVTRFPPEPSGYLHIGHAKAALLNQYFAQAYKGKLIIRF DDTNPSKEKEEFQDSILEDLDLLGIKGDRITYSSDYFQEMYDYCVQMIKDGKAYCDDTPT EKMREERMDGVASARRDRSVEENLRIFTEEMKNGTEEGLKNCVRAKIDYKALNKTLRDPV IYRCNLTPHHRTGSTWKIYPTYDFCVPIVDAIEGVTHALRTIEYRDRNAQYDWMLQALRL RKVHIWDFARINFVRTLLSKRKLQWMVDKDLVGNWDDPRFPTVRGVRRRGMTVEGLRNFV LSQGPSRNVINLEWNLIWAFNKKVIDPIAPRHTAIVNPVKIHLEGSEAPQEPKIEMKPKH KKNPAVGEKKVIYYKDIVVDKDDADVINVDEEVTLMDWGNVIITKKNDDGSMVAKLNLEG DFKKTKHKLTWLADTKDVVPVDLVDFDHLITKDRLEEDESFEDFLTPQTEFHTDAIADLN VKDMKIGDIIQFERKGYYRLDALPKDGKPYVFFTIPDGKSVNKYGAKK
References
External Links
ResourceLink
Saccharomyces Genome Database GUS1
Uniprot IDP46655
Uniprot NameSYEC_YEAST
General Reference
  • Vandenbol, M., Durand, P., Portetelle, D., Hilger, F. (1995). "The sequence of an 11.1 kb DNA fragment between ADH4 and ADE5 on the left arm of chromosome VII reveals the presence of eight open reading frames." Yeast 11:1519-1523.8750240
  • Tettelin, H., Agostoni Carbone, M. L., Albermann, K., Albers, M., Arroyo, J., Backes, U., Barreiros, T., Bertani, I., Bjourson, A. J., Bruckner, M., Bruschi, C. V., Carignani, G., Castagnoli, L., Cerdan, E., Clemente, M. L., Coblenz, A., Coglievina, M., Coissac, E., Defoor, E., Del Bino, S., Delius, H., Delneri, D., de Wergifosse, P., Dujon, B., Kleine, K., et, a. l. .. (1997). "The nucleotide sequence of Saccharomyces cerevisiae chromosome VII." Nature 387:81-84.9169869
  • Coissac, E., Maillier, E., Robineau, S., Netter, P. (1996). "Sequence of a 39,411 bp DNA fragment covering the left end of chromosome VII of Saccharomyces cerevisiae." Yeast 12:1555-1562.8972578
  • Kellis, M., Patterson, N., Endrizzi, M., Birren, B., Lander, E. S. (2003). "Sequencing and comparison of yeast species to identify genes and regulatory elements." Nature 423:241-254.12748633
  • Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., O'Shea, E. K. (2003). "Global analysis of protein localization in budding yeast." Nature 425:686-691.14562095
  • Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K., Weissman, J. S. (2003). "Global analysis of protein expression in yeast." Nature 425:737-741.14562106
  • Albuquerque, C. P., Smolka, M. B., Payne, S. H., Bafna, V., Eng, J., Zhou, H. (2008). "A multidimensional chromatography technology for in-depth phosphoproteome analysis." Mol Cell Proteomics 7:1389-1396.18407956
  • Simader, H., Hothorn, M., Suck, D. (2006). "Structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA-aminoacylation and nuclear-export cofactor Arc1p reveal a novel function for an old fold." Acta Crystallogr D Biol Crystallogr 62:1510-1519.17139087
  • Simader, H., Hothorn, M., Kohler, C., Basquin, J., Simos, G., Suck, D. (2006). "Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes." Nucleic Acids Res 34:3968-3979.16914447