You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB12737
NameDG(14:0/14:0/0:0)
SpeciesSaccharomyces cerevisiae
StrainBrewer's yeast
DescriptionDG(14:0/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
Structure
Thumb
Synonyms
  • 2,3-Dimyristin
  • 2,3-Ditetradecanoyl-sn-glycerol
  • DG 0:0/14:0/14:0
CAS numberNot Available
WeightAverage: 512.816
Monoisotopic: 512.444075032
InChI KeyJFBCSFJKETUREV-GDLZYMKVSA-N
InChIInChI=1S/C31H60O5/c1-3-5-7-9-11-13-15-17-19-21-23-25-30(33)35-28-29(27-32)36-31(34)26-24-22-20-18-16-14-12-10-8-6-4-2/h29,32H,3-28H2,1-2H3/t29-/m1/s1
IUPAC Name(2R)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl tetradecanoate
Traditional IUPAC Name(2R)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl tetradecanoate
Chemical FormulaC31H60O5
SMILES[H][C@@](CO)(COC(=O)CCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC
Chemical Taxonomy
Description belongs to the class of organic compounds known as 1,2-diacylglycerols. These are diacylglycerols containing a glycerol acylated at positions 1 and 2.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerolipids
Sub ClassDiradylglycerols
Direct Parent1,2-diacylglycerols
Alternative Parents
Substituents
  • 1,2-acyl-sn-glycerol
  • Fatty acid ester
  • Fatty acyl
  • Dicarboxylic acid or derivatives
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateSolid
Charge0
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water SolubilityNot AvailablePhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
Water Solubility2.8e-05 g/LALOGPS
logP9.19ALOGPS
logP10.22ChemAxon
logS-7.3ALOGPS
pKa (Strongest Acidic)14.58ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area72.83 ŲChemAxon
Rotatable Bond Count30ChemAxon
Refractivity149.29 m³·mol⁻¹ChemAxon
Polarizability67.49 ųChemAxon
Number of Rings0ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • Cytoplasm
  • Endoplasmic reticulum
Organoleptic PropertiesNot Available
SMPDB Pathways
Lysolipid incorporation into ERPW002532 ThumbThumb?image type=greyscaleThumb?image type=simple
Lysolipid incorporation into ER PC(14:0/14:0)PW002783 ThumbThumb?image type=greyscaleThumb?image type=simple
Lysolipid incorporation into ER PC(18:2(9Z,11Z)/18:2(9Z,11Z))PW002789 ThumbThumb?image type=greyscaleThumb?image type=simple
Triacylglycerol metabolism TG(14:0/14:0/14:0)PW007615 ThumbThumb?image type=greyscaleThumb?image type=simple
Triacylglycerol metabolism TG(14:0/14:0/25:0)PW007819 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG PathwaysNot Available
SMPDB Reactions
TG(14:0/14:0/27:0) + waterhydron + Fatty Acid + DG(14:0/14:0/0:0)
TG(14:0/14:0/29:0) + waterhydron + Fatty Acid + DG(14:0/14:0/0:0)
DG(14:0/14:0/0:0) + waterhydron + Palmitic acid + MG(14:0/0:0/0:0)
DG(14:0/14:0/0:0) + waterhydron + Palmitic acid + MG(25:0/0:0/0:0)
DG(14:0/14:0/0:0) + waterhydron + Palmitic acid + MG(27:0/0:0/0:0)
KEGG ReactionsNot Available
Concentrations
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00kr-0092050000-42e5100db3d0672cfdb2JSpectraViewer
References
References:
  • Rattray JB, Schibeci A, Kidby DK. (1975). "Lipids of yeasts." Bacteriol Rev. 1975 Sep;39(3):197-231.240350
Synthesis Reference:Not Available
External Links:
ResourceLink
CHEBI ID77392
HMDB IDNot Available
Pubchem Compound IDNot Available
Kegg IDNot Available
ChemSpider IDNot Available
FOODB IDNot Available
Wikipedia IDNot Available
BioCyc IDNot Available

Enzymes

General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. Required for storage lipid synthesis. May be involved in lipid particle synthesis from the endoplasmic reticulum and ergosterol biosynthesis
Gene Name:
DGA1
Uniprot ID:
Q08650
Molecular weight:
47710.89844
Reactions
Acyl-CoA + 1,2-diacylglycerol → CoA + triacylglycerol.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Involved in pre-tRNA splicing. CTP- dependent diacylglycerol kinase that catalyzes the phosphorylation of diacylglycerol (DAG) to phosphatidate (PA). Controls phosphatidate levels at the nuclear envelope. Counteracts the activity of PAH1/SMP2. Involved in the resistance to nickel chloride and nalidixic acid. May be involved in vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus
Gene Name:
DGK1
Uniprot ID:
Q12382
Molecular weight:
32839.80078
Reactions
CTP + 1,2-diacyl-sn-glycerol → CDP + 1,2-diacyl-sn-glycerol 3-phosphate.
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. The multiple transmembrane domains and lumenal hydrophilic domains of the cholinephosphotransferase might participate in the transport process
Gene Name:
CPT1
Uniprot ID:
P17898
Molecular weight:
44829.0
Reactions
CDP-choline + 1,2-diacylglycerol → CMP + a phosphatidylcholine.
General function:
Involved in lipid metabolic process
Specific function:
Mediates the hydrolysis of steryl esters. Required for mobilization of steryl ester, thereby playing a central role in lipid metabolism. May have weak lipase activity toward triglycerides upon some conditions, however, the relevance of such activity is unclear in vivo
Gene Name:
TGL1
Uniprot ID:
P34163
Molecular weight:
62978.39844
Reactions
A steryl ester + H(2)O → a sterol + a fatty acid.
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Lipolytic activity towards triacylglycerols and diacylglycerols with short-chain fatty acids
Gene Name:
TGL2
Uniprot ID:
P54857
Molecular weight:
37499.89844
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process
Gene Name:
TGL3
Uniprot ID:
P40308
Molecular weight:
73611.79688
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process. May have a specific role in sporulation
Gene Name:
TGL5
Uniprot ID:
Q12043
Molecular weight:
84715.10156
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process. May have a specific role in sporulation
Gene Name:
TGL4
Uniprot ID:
P36165
Molecular weight:
102716.0
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
vacuole fusion, non-autophagic
Specific function:
Mg(2+)-dependent phosphatidate (PA) phosphatase which catalyzes the dephosphorylation of PA to yield diacylglycerol. Required for de novo lipid synthesis and formation of lipid droplets. Controles transcription of phospholipid biosynthetic genes and nuclear structure by regulating the amount of membrane present at the nuclear envelope. Involved in plasmid maintenance, in respiration and in cell proliferation.
Gene Name:
PAH1
Uniprot ID:
P32567
Molecular weight:
95029.985
Reactions