You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00862
Namehydron
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionHydrogen ion, also known as hydrogen ion or hydrogen ion, belongs to the class of inorganic compounds known as other non-metal hydrides. These are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of 'other non-metals'. Hydrogen ion is possibly soluble (in water) and possibly neutral. Hydrogen ion exists in all living species, ranging from bacteria to humans.
Structure
Thumb
Synonyms
  • (1)1H(+)
  • (1)H(+)
  • h(+)
  • h+
  • p
  • p(+)
  • proton
  • Hydron
  • Hydrogen cation
  • Protons
  • Hydrogen ions
  • Ions, hydrogen
  • Ion, hydrogen
CAS number12408-02-5
WeightAverage: 1.00794
Monoisotopic: 1.007825032
InChI KeyGPRLSGONYQIRFK-UHFFFAOYSA-N
InChIInChI=1S/p+1
IUPAC Namehydron
Traditional IUPAC Namehydron
Chemical FormulaH
SMILES[H+]
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as other non-metal hydrides. These are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of 'other non-metals'.
KingdomInorganic compounds
Super ClassHomogeneous non-metal compounds
ClassOther non-metal organides
Sub ClassOther non-metal hydrides
Direct ParentOther non-metal hydrides
Alternative ParentsNot Available
Substituents
  • Other non-metal hydride
Molecular FrameworkNot Available
External Descriptors
Physical Properties
StateSolid
Charge1
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water SolubilityNot AvailablePhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
logP0ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Polarizability0.52 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • Golgi
  • mitochondrion
  • endoplasmic reticulum
  • peroxisome
  • vacuole
  • cytoplasm
  • cell envelope
  • extracellular
  • lipid particle
  • nucleus
Organoleptic PropertiesNot Available
SMPDB Pathways
4-aminobutanoate degradationPW002382 ThumbThumb?image type=greyscaleThumb?image type=simple
Amino sugar and nucleotide sugar metabolismPW002413 ThumbThumb?image type=greyscaleThumb?image type=simple
Asparagine metabolismPW002274 ThumbThumb?image type=greyscaleThumb?image type=simple
Aspartate metabolismPW002375 ThumbThumb?image type=greyscaleThumb?image type=simple
Beer ReactionsPW002719 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Amino sugar and nucleotide sugar metabolismec00520 Map00520
Biosynthesis of unsaturated fatty acidsec01040 Map01040
Ether lipid metabolismec00565 Map00565
Fatty acid elongation in mitochondriaec00062 Map00062
Fatty acid metabolismec00071 Map00071
SMPDB Reactions
Isocitric acid + NADOxoglutaric acid + Carbon dioxide + NADH + hydron
Oxoglutaric acid + NAD + Coenzyme ASuccinyl-CoA + NADH + hydron + Carbon dioxide
(S)-Malic acid + NADOxalacetic acid + NADH + hydron
Oxalacetic acid + hydron + NADH(S)-Malic acid + NAD
NADH + hydron + Oxalacetic acid(S)-Malic acid + NAD
KEGG Reactions
NAD + (R,R)-butane-2,3-diolNADH + hydron + (R)-Acetoin
Uridine diphosphate glucoseUridine 5'-diphosphate + (1->3)-beta-D-glucan + hydron
Uridine diphosphate glucoseUridine 5'-diphosphate + hydron + (1->6)-beta-D-glucan
acyl-CoA + PA(18:1(9Z)/0:0)hydron + LPA(16:0/0:0) + Coenzyme A
Adenosine triphosphate + 1-phosphatidyl-1D-myo-inositol 3-phosphate + hydronADP + 1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate
Concentrations
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Chen, C. N., Porubleva, L., Shearer, G., Svrakic, M., Holden, L. G., Dover, J. L., Johnston, M., Chitnis, P. R., Kohl, D. H. (2003). "Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae." Yeast 20:545-554.12722185
  • Hauser, M., Horn, P., Tournu, H., Hauser, N. C., Hoheisel, J. D., Brown, A. J., Dickinson, J. R. (2007). "A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase." FEMS Yeast Res 7:84-92.16999827
  • Davies, K. M., Strauss, M., Daum, B., Kief, J. H., Osiewacz, H. D., Rycovska, A., Zickermann, V., Kuhlbrandt, W. (2011). "Macromolecular organization of ATP synthase and complex I in whole mitochondria." Proc Natl Acad Sci U S A :.21836051
  • Hughes, W. E., Woscholski, R., Cooke, F. T., Patrick, R. S., Dove, S. K., McDonald, N. Q., Parker, P. J. (2000). "SAC1 encodes a regulated lipid phosphoinositide phosphatase, defects in which can be suppressed by the homologous Inp52p and Inp53p phosphatases." J Biol Chem 275:801-808.10625610
  • Jones, J. M., Nau, K., Geraghty, M. T., Erdmann, R., Gould, S. J. (1999). "Identification of peroxisomal acyl-CoA thioesterases in yeast and humans." J Biol Chem 274:9216-9223.10092594
  • Hoja, U., Wellein, C., Greiner, E., Schweizer, E. (1998). "Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG)." Eur J Biochem 254:520-526.9688262
  • Athenstaedt, K., Daum, G. (1997). "Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae." J Bacteriol 179:7611-7616.9401016
  • Outten, C. E., Culotta, V. C. (2004). "Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase." J Biol Chem 279:7785-7791.14672937
  • Sato, M., Sato, K., Nishikawa, S., Hirata, A., Kato, J., Nakano, A. (1999). "The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis." Mol Cell Biol 19:471-483.9858571
  • Singh, J., Kumar, D., Ramakrishnan, N., Singhal, V., Jervis, J., Garst, J. F., Slaughter, S. M., DeSantis, A. M., Potts, M., Helm, R. F. (2005). "Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration." Appl Environ Microbiol 71:8752-8763.16332871
  • Cullin, C., Baudin-Baillieu, A., Guillemet, E., Ozier-Kalogeropoulos, O. (1996). "Functional analysis of YCL09C: evidence for a role as the regulatory subunit of acetolactate synthase." Yeast 12:1511-1518.8972574
  • Lee, K. S., Patton, J. L., Fido, M., Hines, L. K., Kohlwein, S. D., Paltauf, F., Henry, S. A., Levin, D. E. (1994). "The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity." J Biol Chem 269:19725-19730.8051052
  • Hoja, U., Marthol, S., Hofmann, J., Stegner, S., Schulz, R., Meier, S., Greiner, E., Schweizer, E. (2004). "HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae." J Biol Chem 279:21779-21786.14761959
  • Fukuda, K., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y., Kimura, A. (2000). "Purification and characterization of isoamyl acetate-hydrolyzing esterase encoded by the IAH1 gene of Saccharomyces cerevisiae from a recombinant Escherichia coli." Appl Microbiol Biotechnol 53:596-600.10855721
  • Han, G. S., Audhya, A., Markley, D. J., Emr, S. D., Carman, G. M. (2002). "The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity." J Biol Chem 277:47709-47718.12361950
  • Phalip, V., Kuhn, I., Lemoine, Y., Jeltsch, J. M. (1999). "Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake." Gene 232:43-51.10333520
  • Saint-Prix, F., Bonquist, L., Dequin, S. (2004). "Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation." Microbiology 150:2209-2220.15256563
  • Amako, K., Fujita, K., Shimohata, T. A., Hasegawa, E., Kishimoto, R., Goda, K. (2006). "NAD+-specific D-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae." FEBS Lett 580:6428-6434.17097644
  • Bhattacharjee, J. K. (1985). "alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes." Crit Rev Microbiol 12:131-151.3928261
  • White, W. H., Skatrud, P. L., Xue, Z., Toyn, J. H. (2003). "Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae." Genetics 163:69-77.12586697
  • Larimer, F. W., Morse, C. C., Beck, A. K., Cole, K. W., Gaertner, F. H. (1983). "Isolation of the ARO1 cluster gene of Saccharomyces cerevisiae." Mol Cell Biol 3:1609-1614.6355828
  • Hjelmstad, R. H., Bell, R. M. (1988). "The sn-1,2-diacylglycerol ethanolaminephosphotransferase activity of Saccharomyces cerevisiae. Isolation of mutants and cloning of the EPT1 gene." J Biol Chem 263:19748-19757.2848840
  • Nasr, F., Filipowicz, W. (2000). "Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1",2"-cyclic phosphate." Nucleic Acids Res 28:1676-1683.10734185
  • ter Schure, E. G., Sillje, H. H., Vermeulen, E. E., Kalhorn, J. W., Verkleij, A. J., Boonstra, J., Verrips, C. T. (1998). "Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae." Microbiology 144 ( Pt 5):1451-1462.9611819
  • Zabriskie, T. M., Jackson, M. D. (2000). "Lysine biosynthesis and metabolism in fungi." Nat Prod Rep 17:85-97.10714900
  • Tomitori, H., Kashiwagi, K., Asakawa, T., Kakinuma, Y., Michael, A. J., Igarashi, K. (2001). "Multiple polyamine transport systems on the vacuolar membrane in yeast." Biochem J 353:681-688.11171066
  • Zhu, X., Garrett, J., Schreve, J., Michaeli, T. (1996). "GNP1, the high-affinity glutamine permease of S. cerevisiae." Curr Genet 30:107-114.8660458
  • Korch, C., Mountain, H. A., Bystrom, A. S. (1991). "Cloning, nucleotide sequence, and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae." Mol Gen Genet 229:96-108.1654509
  • Thomas, D., Barbey, R., Surdin-Kerjan, Y. (1993). "Evolutionary relationships between yeast and bacterial homoserine dehydrogenases." FEBS Lett 323:289-293.8500624
  • Jin, C., Barrientos, A., Tzagoloff, A. (2003). "Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration." J Biol Chem 278:14698-14703.12595523
  • Schreve, J. L., Sin, J. K., Garrett, J. M. (1998). "The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine." J Bacteriol 180:2556-2559.9573211
  • Murray, J. P., McMaster, C. R. (2005). "Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p." J Biol Chem 280:8544-8552.15611060
  • Romero, P. A., Lussier, M., Sdicu, A. M., Bussey, H., Herscovics, A. (1997). "Ktr1p is an alpha-1,2-mannosyltransferase of Saccharomyces cerevisiae. Comparison of the enzymic properties of soluble recombinant Ktr1p and Kre2p/Mnt1p produced in Pichia pastoris." Biochem J 321 ( Pt 2):289-295.9020857
  • Bayly, A. M., Berglez, J. M., Patel, O., Castelli, L. A., Hankins, E. G., Coloe, P., Hopkins Sibley, C., Macreadie, I. G. (2001). "Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae." FEMS Microbiol Lett 204:387-390.11731153
  • Bleve, G., Zacheo, G., Cappello, M. S., Dellaglio, F., Grieco, F. (2005). "Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein." Biochem J 390:145-155.15813700
  • Stolz, L. E., Kuo, W. J., Longchamps, J., Sekhon, M. K., York, J. D. (1998). "INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype." J Biol Chem 273:11852-11861.9565610
  • Fujisawa, H., Nagata, S., Misono, H. (2003). "Characterization of short-chain dehydrogenase/reductase homologues of Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C)." Biochim Biophys Acta 1645:89-94.12535615
  • Roemer, T., Delaney, S., Bussey, H. (1993). "SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis." Mol Cell Biol 13:4039-4048.8321211
  • Inoue, S. B., Takewaki, N., Takasuka, T., Mio, T., Adachi, M., Fujii, Y., Miyamoto, C., Arisawa, M., Furuichi, Y., Watanabe, T. (1995). "Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae." Eur J Biochem 231:845-854.7649185
  • Suliman, H. S., Sawyer, G. M., Appling, D. R., Robertus, J. D. (2005). "Purification and properties of cobalamin-independent methionine synthase from Candida albicans and Saccharomyces cerevisiae." Arch Biochem Biophys 441:56-63.16083849
  • Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., O'Shea, E. K. (2003). "Global analysis of protein localization in budding yeast." Nature 425:686-691.14562095
  • Guyonvarch, A., Nguyen-Juilleret, M., Hubert, J. C., Lacroute, F. (1988). "Structure of the Saccharomyces cerevisiae URA4 gene encoding dihydroorotase." Mol Gen Genet 212:134-141.2897615
  • Sorger, D., Daum, G. (2002). "Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae." J Bacteriol 184:519-524.11751830
  • Kastaniotis, A. J., Autio, K. J., Sormunen, R. T., Hiltunen, J. K. (2004). "Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology." Mol Microbiol 53:1407-1421.15387819
  • Crombie, T., Boyle, J. P., Coggins, J. R., Brown, A. J. (1994). "The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol-phosphate synthase." Eur J Biochem 226:657-664.8001582
  • Subhi, A. L., Diegelman, P., Porter, C. W., Tang, B., Lu, Z. J., Markham, G. D., Kruger, W. D. (2003). "Methylthioadenosine phosphorylase regulates ornithine decarboxylase by production of downstream metabolites." J Biol Chem 278:49868-49873.14506228
  • Liger, D., Graille, M., Zhou, C. Z., Leulliot, N., Quevillon-Cheruel, S., Blondeau, K., Janin, J., van Tilbeurgh, H. (2004). "Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities." J Biol Chem 279:34890-34897.15184374
  • Watanabe, R., Ohishi, K., Maeda, Y., Nakamura, N., Kinoshita, T. (1999). "Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis." Biochem J 339 ( Pt 1):185-192.10085243
  • Fisher, E., Almaguer, C., Holic, R., Griac, P., Patton-Vogt, J. (2005). "Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae." J Biol Chem 280:36110-36117.16141200
  • Kim, K. H., Voelker, D. R., Flocco, M. T., Carman, G. M. (1998). "Expression, purification, and characterization of choline kinase, product of the CKI gene from Saccharomyces cerevisiae." J Biol Chem 273:6844-6852.9506987
  • Stolz, J., Vielreicher, M. (2003). "Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae." J Biol Chem 278:18990-18996.12649274
  • Tomitori, H., Kashiwagi, K., Sakata, K., Kakinuma, Y., Igarashi, K. (1999). "Identification of a gene for a polyamine transport protein in yeast." J Biol Chem 274:3265-3267.9920864
  • Briza, P., Kalchhauser, H., Pittenauer, E., Allmaier, G., Breitenbach, M. (1996). "N,N'-Bisformyl dityrosine is an in vivo precursor of the yeast ascospore wall." Eur J Biochem 239:124-131.8706696
  • Kodaki, T., Yamashita, S. (1987). "Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes." J Biol Chem 262:15428-15435.2445736
  • Uemura, T., Kashiwagi, K., Igarashi, K. (2007). "Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae." J Biol Chem 282:7733-7741.17218313
  • Toke, D. A., Bennett, W. L., Dillon, D. A., Wu, W. I., Chen, X., Ostrander, D. B., Oshiro, J., Cremesti, A., Voelker, D. R., Fischl, A. S., Carman, G. M. (1998). "Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding diacylglycerol pyrophosphate phosphatase." J Biol Chem 273:3278-3284.9452443
  • Burke, R. L., Tekamp-Olson, P., Najarian, R. (1983). "The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae." J Biol Chem 258:2193-2201.6185493
  • Hyle, J. W., Shaw, R. J., Reines, D. (2003). "Functional distinctions between IMP dehydrogenase genes in providing mycophenolate resistance and guanine prototrophy to yeast." J Biol Chem 278:28470-28478.12746440
  • Bieganowski, P., Brenner, C. (2004). "Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans." Cell 117:495-502.15137942
  • Hogan, D. A., Auchtung, T. A., Hausinger, R. P. (1999). "Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae." J Bacteriol 181:5876-5879.10482536
  • Heinisch, J. (1986). "Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast." Mol Gen Genet 202:75-82.3007939
  • Geisbrecht, B. V., Zhu, D., Schulz, K., Nau, K., Morrell, J. C., Geraghty, M., Schulz, H., Erdmann, R., Gould, S. J. (1998). "Molecular characterization of Saccharomyces cerevisiae Delta3, Delta2-enoyl-CoA isomerase." J Biol Chem 273:33184-33191.9837886
  • Cavero, S., Vozza, A., del Arco, A., Palmieri, L., Villa, A., Blanco, E., Runswick, M. J., Walker, J. E., Cerdan, S., Palmieri, F., Satrustegui, J. (2003). "Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae." Mol Microbiol 50:1257-1269.14622413
  • Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., Serrano, R. (2004). "Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis." Yeast 21:303-312.15042590
  • Pegg, A. E. (1986). "Recent advances in the biochemistry of polyamines in eukaryotes." Biochem J 234:249-262.3087344
  • Saint-Marc, C., Daignan-Fornier, B. (2004). "GUD1 (YDL238c) encodes Saccharomyces cerevisiae guanine deaminase, an enzyme expressed during post-diauxic growth." Yeast 21:1359-1363.15565584
  • He, B., Chen, P., Chen, S. Y., Vancura, K. L., Michaelis, S., Powers, S. (1991). "RAM2, an essential gene of yeast, and RAM1 encode the two polypeptide components of the farnesyltransferase that prenylates a-factor and Ras proteins." Proc Natl Acad Sci U S A 88:11373-11377.1763050
  • Yoo, H. S., Cooper, T. G. (1991). "The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae." Yeast 7:693-698.1776360
  • Thomas, D., Becker, A., Surdin-Kerjan, Y. (2000). "Reverse methionine biosynthesis from S-adenosylmethionine in eukaryotic cells." J Biol Chem 275:40718-40724.11013242
  • Plateau, P., Fromant, M., Schmitter, J. M., Buhler, J. M., Blanquet, S. (1989). "Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase." J Bacteriol 171:6437-6445.2556364
  • Lundin, M., Baltscheffsky, H., Ronne, H. (1991). "Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function." J Biol Chem 266:12168-12172.1648084
  • Vuralhan, Z., Morais, M. A., Tai, S. L., Piper, M. D., Pronk, J. T. (2003). "Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae." Appl Environ Microbiol 69:4534-4541.12902239
  • Furneisen, J. M., Carman, G. M. (2000). "Enzymological properties of the LPP1-encoded lipid phosphatase from Saccharomyces cerevisiae." Biochim Biophys Acta 1484:71-82.10685032
  • Lobsanov, Y. D., Romero, P. A., Sleno, B., Yu, B., Yip, P., Herscovics, A., Howell, P. L. (2004). "Structure of Kre2p/Mnt1p: a yeast alpha1,2-mannosyltransferase involved in mannoprotein biosynthesis." J Biol Chem 279:17921-17931.14752117
  • Grabinska, K., Palamarczyk, G. (2002). "Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase." FEMS Yeast Res 2:259-265.12702274
  • Lussier, M., Sdicu, A. M., Camirand, A., Bussey, H. (1996). "Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family." J Biol Chem 271:11001-11008.8631921
  • Ford, G., Ellis, E. M. (2002). "Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase." Yeast 19:1087-1096.12210903
  • Velot, C., Lebreton, S., Morgunov, I., Usher, K. C., Srere, P. A. (1999). "Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae." Biochemistry 38:16195-16204.10587442
  • Luttik, M. A., Overkamp, K. M., Kotter, P., de Vries, S., van Dijken, J. P., Pronk, J. T. (1998). "The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH." J Biol Chem 273:24529-24534.9733747
  • Mu, J., Cheng, C., Roach, P. J. (1996). "Initiation of glycogen synthesis in yeast. Requirement of multiple tyrosine residues for function of the self-glucosylating Glg proteins in vivo." J Biol Chem 271:26554-26560.8900126
  • Albers, E., Laize, V., Blomberg, A., Hohmann, S., Gustafsson, L. (2003). "Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae." J Biol Chem 278:10264-10272.12525494
  • Coleman, S. T., Fang, T. K., Rovinsky, S. A., Turano, F. J., Moye-Rowley, W. S. (2001). "Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae." J Biol Chem 276:244-250.11031268
  • Mao, C., Xu, R., Bielawska, A., Szulc, Z. M., Obeid, L. M. (2000). "Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide." J Biol Chem 275:31369-31378.10900202
  • Athenstaedt, K., Weys, S., Paltauf, F., Daum, G. (1999). "Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae." J Bacteriol 181:1458-1463.10049376
  • Smolka, M. B., Albuquerque, C. P., Chen, S. H., Zhou, H. (2007). "Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases." Proc Natl Acad Sci U S A 104:10364-10369.17563356
  • Shen, H., Heacock, P. N., Clancey, C. J., Dowhan, W. (1996). "The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth." J Biol Chem 271:789-795.8557688
  • Kohlwein, S. D., Eder, S., Oh, C. S., Martin, C. E., Gable, K., Bacikova, D., Dunn, T. (2001). "Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae." Mol Cell Biol 21:109-125.11113186
  • Entian, K. D., Kopetzki, E., Frohlich, K. U., Mecke, D. (1984). "Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts." Mol Gen Genet 198:50-54.6394965
  • Dubois, E., Scherens, B., Vierendeels, F., Ho, M. M., Messenguy, F., Shears, S. B. (2002). "In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis." J Biol Chem 277:23755-23763.11956213
  • Marbois, B., Gin, P., Faull, K. F., Poon, W. W., Lee, P. T., Strahan, J., Shepherd, J. N., Clarke, C. F. (2005). "Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q." J Biol Chem 280:20231-20238.15792955
  • Lee, Y. S., Mulugu, S., York, J. D., O'Shea, E. K. (2007). "Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates." Science 316:109-112.17412959
  • Homma, K., Terui, S., Minemura, M., Qadota, H., Anraku, Y., Kanaho, Y., Ohya, Y. (1998). "Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis." J Biol Chem 273:15779-15786.9624177
  • Tessier, W. D., Meaden, P. G., Dickinson, F. M., Midgley, M. (1998). "Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae." FEMS Microbiol Lett 164:29-34.9675847
  • Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J., Syka, J. E., Bai, D. L., Shabanowitz, J., Burke, D. J., Troyanskaya, O. G., Hunt, D. F. (2007). "Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry." Proc Natl Acad Sci U S A 104:2193-2198.17287358
  • Maitra, P. K., Lobo, Z. (1983). "Genetics of yeast glucokinase." Genetics 105:501-515.6357942
  • Han, G., Gable, K., Kohlwein, S. D., Beaudoin, F., Napier, J. A., Dunn, T. M. (2002). "The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase." J Biol Chem 277:35440-35449.12087109
  • Ramos, F., Dubois, E., Pierard, A. (1988). "Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14." Eur J Biochem 171:171-176.3123231
  • Foti, M., Audhya, A., Emr, S. D. (2001). "Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology." Mol Biol Cell 12:2396-2411.11514624
  • Panozzo, C., Nawara, M., Suski, C., Kucharczyka, R., Skoneczny, M., Becam, A. M., Rytka, J., Herbert, C. J. (2002). "Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae." FEBS Lett 517:97-102.12062417
  • Mio, T., Yamada-Okabe, T., Arisawa, M., Yamada-Okabe, H. (1999). "Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis." J Biol Chem 274:424-429.9867860
  • Yamashita, S., Nikawa, J. (1997). "Phosphatidylserine synthase from yeast." Biochim Biophys Acta 1348:228-235.9370337
  • Thomas, D., Barbey, R., Surdin-Kerjan, Y. (1990). "Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene." J Biol Chem 265:15518-15524.2203779
  • Moreira dos Santos, M., Thygesen, G., Kotter, P., Olsson, L., Nielsen, J. (2003). "Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability." FEMS Yeast Res 4:59-68.14554197
  • Jiang, J. C., Kirchman, P. A., Zagulski, M., Hunt, J., Jazwinski, S. M. (1998). "Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human." Genome Res 8:1259-1272.9872981
  • Casal, M., Paiva, S., Andrade, R. P., Gancedo, C., Leao, C. (1999). "The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1." J Bacteriol 181:2620-2623.10198029
  • Vozza, A., Blanco, E., Palmieri, L., Palmieri, F. (2004). "Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae." J Biol Chem 279:20850-20857.14998997
  • Richter, G., Fischer, M., Krieger, C., Eberhardt, S., Luttgen, H., Gerstenschlager, I., Bacher, A. (1997). "Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis." J Bacteriol 179:2022-2028.9068650
  • Albertyn, J., Hohmann, S., Thevelein, J. M., Prior, B. A. (1994). "GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway." Mol Cell Biol 14:4135-4144.8196651
  • Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O., Cohen, H., Lin, S. S., Manchester, J. K., Gordon, J. I., Sinclair, D. A. (2002). "Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels." J Biol Chem 277:18881-18890.11884393
  • Zalkin, H., Paluh, J. L., van Cleemput, M., Moye, W. S., Yanofsky, C. (1984). "Nucleotide sequence of Saccharomyces cerevisiae genes TRP2 and TRP3 encoding bifunctional anthranilate synthase: indole-3-glycerol phosphate synthase." J Biol Chem 259:3985-3992.6323449
  • Leskovac, V., Trivic, S., Pericin, D. (2002). "The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae." FEMS Yeast Res 2:481-494.12702265
  • Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., Jensen, O. N. (2005). "Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway." Mol Cell Proteomics 4:310-327.15665377
  • Gary, J. D., Lin, W. J., Yang, M. C., Herschman, H. R., Clarke, S. (1996). "The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae." J Biol Chem 271:12585-12594.8647869
  • Przybyla-Zawislak, B., Gadde, D. M., Ducharme, K., McCammon, M. T. (1999). "Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes." Genetics 152:153-166.10224250
  • Jia, Y. K., Becam, A. M., Herbert, C. J. (1997). "The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase." Mol Microbiol 24:53-59.9140965
  • McAlister, L., Holland, M. J. (1985). "Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes." J Biol Chem 260:15019-15027.3905788
  • Larroy, C., Fernandez, M. R., Gonzalez, E., Pares, X., Biosca, J. A. (2002). "Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction." Biochem J 361:163-172.11742541
  • Guo, S., Stolz, L. E., Lemrow, S. M., York, J. D. (1999). "SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases." J Biol Chem 274:12990-12995.10224048
  • Schubert, H. L., Raux, E., Brindley, A. A., Leech, H. K., Wilson, K. S., Hill, C. P., Warren, M. J. (2002). "The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase." EMBO J 21:2068-2075.11980703
  • Milewski, S., Gabriel, I., Olchowy, J. (2006). "Enzymes of UDP-GlcNAc biosynthesis in yeast." Yeast 23:1-14.16408321
  • Rebbeor, J. F., Connolly, G. C., Dumont, M. E., Ballatori, N. (1998). "ATP-dependent transport of reduced glutathione in yeast secretory vesicles." Biochem J 334 ( Pt 3):723-729.9729482
  • Strahl, T., Thorner, J. (2007). "Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae." Biochim Biophys Acta 1771:353-404.17382260
  • Cherest, H., Thomas, D., Surdin-Kerjan, Y. (2000). "Polyglutamylation of folate coenzymes is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae." J Biol Chem 275:14056-14063.10799479
  • Lawther, R. P., Riemer, E., Chojnacki, B., Cooper, T. G. (1974). "Clustering of the genes for allantoin degradation in Saccharomyces cerevisiae." J Bacteriol 119:461-468.4604238
  • Shimazu, M., Sekito, T., Akiyama, K., Ohsumi, Y., Kakinuma, Y. (2005). "A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae." J Biol Chem 280:4851-4857.15572352
  • Mulugu, S., Bai, W., Fridy, P. C., Bastidas, R. J., Otto, J. C., Dollins, D. E., Haystead, T. A., Ribeiro, A. A., York, J. D. (2007). "A conserved family of enzymes that phosphorylate inositol hexakisphosphate." Science 316:106-109.17412958
  • Shi, F., Kawai, S., Mori, S., Kono, E., Murata, K. (2005). "Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae." FEBS J 272:3337-3349.15978040
  • Zheng, Z., Zou, J. (2001). "The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae." J Biol Chem 276:41710-41716.11544256
  • Gao, X. D., Kaigorodov, V., Jigami, Y. (1999). "YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae." J Biol Chem 274:21450-21456.10409709
  • Gonzalez, E., Fernandez, M. R., Larroy, C., Sola, L., Pericas, M. A., Pares, X., Biosca, J. A. (2000). "Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene." J Biol Chem 275:35876-35885.10938079
  • Thomas, D., Surdin-Kerjan, Y. (1989). "Structure of the HOM2 gene of Saccharomyces cerevisiae and regulation of its expression." Mol Gen Genet 217:149-154.2570346
  • Nogae, I., Johnston, M. (1990). "Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase." Gene 96:161-169.2269430
  • Masselot, M., Surdin-Kerjan, Y. (1977). "Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway." Mol Gen Genet 154:23-30.197388
  • Ives, E. B., Nichols, J., Wente, S. R., York, J. D. (2000). "Biochemical and functional characterization of inositol 1,3,4,5, 6-pentakisphosphate 2-kinases." J Biol Chem 275:36575-36583.10960485
  • Safrany, S. T., Ingram, S. W., Cartwright, J. L., Falck, J. R., McLennan, A. G., Barnes, L. D., Shears, S. B. (1999). "The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein." J Biol Chem 274:21735-21740.10419486
  • Dickinson, J. R., Salgado, L. E., Hewlins, M. J. (2003). "The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae." J Biol Chem 278:8028-8034.12499363
  • Hiltunen, J. K., Mursula, A. M., Rottensteiner, H., Wierenga, R. K., Kastaniotis, A. J., Gurvitz, A. (2003). "The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae." FEMS Microbiol Rev 27:35-64.12697341
  • Buu, L. M., Chen, Y. C., Lee, F. J. (2003). "Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae." J Biol Chem 278:17203-17209.12606555
  • Kim, K., Kim, K. H., Storey, M. K., Voelker, D. R., Carman, G. M. (1999). "Isolation and characterization of the Saccharomyces cerevisiae EKI1 gene encoding ethanolamine kinase." J Biol Chem 274:14857-14866.10329685
  • Chang, L. F., Cunningham, T. S., Gatzek, P. R., Chen, W. J., Kohlhaw, G. B. (1984). "Cloning and characterization of yeast Leu4, one of two genes responsible for alpha-isopropylmalate synthesis." Genetics 108:91-106.6090272
  • De Virgilio, C., Burckert, N., Bell, W., Jeno, P., Boller, T., Wiemken, A. (1993). "Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity." Eur J Biochem 212:315-323.8444170
  • Merkel, O., Fido, M., Mayr, J. A., Pruger, H., Raab, F., Zandonella, G., Kohlwein, S. D., Paltauf, F. (1999). "Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae." J Biol Chem 274:28121-28127.10497163
  • Magni, G., Amici, A., Emanuelli, M., Orsomando, G., Raffaelli, N., Ruggieri, S. (2004). "Structure and function of nicotinamide mononucleotide adenylyltransferase." Curr Med Chem 11:873-885.15078171
  • Nikawa, J., Yamashita, S. (1997). "Phosphatidylinositol synthase from yeast." Biochim Biophys Acta 1348:173-178.9370330
  • Hidaka, Y., Shimono, C., Ohno, M., Okumura, N., Adermann, K., Forssmann, W. G., Shimonishi, Y. (2000). "Dual function of the propeptide of prouroguanylin in the folding of the mature peptide: disulfide-coupled folding and dimerization." J Biol Chem 275:25155-25162.10827170
  • Schneiter, R., Tatzer, V., Gogg, G., Leitner, E., Kohlwein, S. D. (2000). "Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae." J Bacteriol 182:3655-3660.10850979
  • Hansen, J., Muldbjerg, M., Cherest, H., Surdin-Kerjan, Y. (1997). "Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes." FEBS Lett 401:20-24.9003798
  • Li, X., Gerber, S. A., Rudner, A. D., Beausoleil, S. A., Haas, W., Villen, J., Elias, J. E., Gygi, S. P. (2007). "Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae." J Proteome Res 6:1190-1197.17330950
  • Gaber, R. F., Styles, C. A., Fink, G. R. (1988). "TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae." Mol Cell Biol 8:2848-2859.3043197
  • Belenky, P., Racette, F. G., Bogan, K. L., McClure, J. M., Smith, J. S., Brenner, C. (2007). "Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+." Cell 129:473-484.17482543
  • Costenoble, R., Valadi, H., Gustafsson, L., Niklasson, C., Franzen, C. J. (2000). "Microaerobic glycerol formation in Saccharomyces cerevisiae." Yeast 16:1483-1495.11113971
  • KAWADA, M., KAGAWA, Y., TAKIGUCHI, H., SHIMAZONO, N. (1962). "Purification of 6-phosphogluconolactonase from rat liver and yeast; its separation from gluconolactonase." Biochim Biophys Acta 57:404-407.14454532
  • Mattheakis, L. C., Shen, W. H., Collier, R. J. (1992). "DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae." Mol Cell Biol 12:4026-4037.1508200
  • Kunze, M., Kragler, F., Binder, M., Hartig, A., Gurvitz, A. (2002). "Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium." Eur J Biochem 269:915-922.11846793
  • Vickers, M. F., Yao, S. Y., Baldwin, S. A., Young, J. D., Cass, C. E. (2000). "Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes." J Biol Chem 275:25931-25938.10827169
  • Marobbio, C. M., Di Noia, M. A., Palmieri, F. (2006). "Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization." Biochem J 393:441-446.16194150
  • Huo, X., Viola, R. E. (1996). "Substrate specificity and identification of functional groups of homoserine kinase from Escherichia coli." Biochemistry 35:16180-16185.8973190
  • Albuquerque, C. P., Smolka, M. B., Payne, S. H., Bafna, V., Eng, J., Zhou, H. (2008). "A multidimensional chromatography technology for in-depth phosphoproteome analysis." Mol Cell Proteomics 7:1389-1396.18407956
  • Warnecke, D., Erdmann, R., Fahl, A., Hube, B., Muller, F., Zank, T., Zahringer, U., Heinz, E. (1999). "Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum." J Biol Chem 274:13048-13059.10224056
  • Lamb, D. C., Kelly, D. E., Manning, N. J., Kaderbhai, M. A., Kelly, S. L. (1999). "Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction." FEBS Lett 462:283-288.10622712
  • Valenzuela, L., Ballario, P., Aranda, C., Filetici, P., Gonzalez, A. (1998). "Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae." J Bacteriol 180:3533-3540.9657994
  • Taylor, G. S., Maehama, T., Dixon, J. E. (2000). "Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate." Proc Natl Acad Sci U S A 97:8910-8915.10900271
  • Brandriss, M. C., Magasanik, B. (1979). "Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline." J Bacteriol 140:498-503.387737
  • Larroy, C., Pares, X., Biosca, J. A. (2002). "Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family." Eur J Biochem 269:5738-5745.12423374
  • Kucharczyk, R., Zagulski, M., Rytka, J., Herbert, C. J. (1998). "The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis." FEBS Lett 424:127-130.9539135
Synthesis Reference:Not Available
External Links:
ResourceLink
CHEBI ID15378
HMDB IDHMDB0059597
Pubchem Compound ID1038
Kegg IDC00080
ChemSpider ID73580
FOODB IDFDB030899
WikipediaHydron_(chemistry)
BioCyc IDPROTON

Enzymes

General function:
Involved in adenosine kinase activity
Specific function:
ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. ADO1 does not play a major role in adenine utilization in yeast. Its physiological role could primarily be to recycle adenosine produced by the methyl cycle
Gene Name:
ADO1
Uniprot ID:
P47143
Molecular weight:
36372.0
Reactions
ATP + adenosine → ADP + AMP.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Involved in the synthesis of the sugar donor Dol-P-Man which is required in the synthesis of N-linked and O-linked oligosaccharides and for that of GPI anchors. It is required for spore germination. Has an essential role in cellular metabolism
Gene Name:
SEC59
Uniprot ID:
P20048
Molecular weight:
58905.39844
Reactions
CTP + dolichol → CDP + dolichyl phosphate.
General function:
Involved in catalytic activity
Specific function:
ATP + N(2)-formyl-N(1)-(5-phospho-D- ribosyl)glycinamide + L-glutamine + H(2)O = ADP + phosphate + 2- (formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine + L-glutamate
Gene Name:
ADE6
Uniprot ID:
P38972
Molecular weight:
148904.0
Reactions
ATP + N(2)-formyl-N(1)-(5-phospho-D-ribosyl)glycinamide + L-glutamine + H(2)O → ADP + phosphate + 2-(formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine + L-glutamate.
General function:
Involved in hydroxymethyl-, formyl- and related transferase activity
Specific function:
10-formyltetrahydrofolate + N(1)-(5-phospho-D- ribosyl)glycinamide = tetrahydrofolate + N(2)-formyl-N(1)-(5- phospho-D-ribosyl)glycinamide
Gene Name:
ADE8
Uniprot ID:
P04161
Molecular weight:
23540.0
Reactions
10-formyltetrahydrofolate + N(1)-(5-phospho-D-ribosyl)glycinamide → tetrahydrofolate + N(2)-formyl-N(1)-(5-phospho-D-ribosyl)glycinamide.
General function:
Involved in catalytic activity
Specific function:
Chorismate + L-glutamine = anthranilate + pyruvate + L-glutamate
Gene Name:
TRP3
Uniprot ID:
P00937
Molecular weight:
53488.89844
Reactions
Chorismate + L-glutamine → anthranilate + pyruvate + L-glutamate.
1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate → 1-C-(3-indolyl)-glycerol 3-phosphate + CO(2) + H(2)O.
General function:
Involved in catalytic activity
Specific function:
IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The glutamine amidotransferase domain provides the ammonia necessary to the cyclase domain to produce IGP and AICAR from PRFAR
Gene Name:
HIS7
Uniprot ID:
P33734
Molecular weight:
61067.60156
Reactions
5-[(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino]-1-(5-phosphoribosyl)imidazole-4-carboxamide + L-glutamine → imidazole-glycerol phosphate + 5-aminoimidazol-4-carboxamide ribonucleotide + L-glutamate + H(2)O.
General function:
Involved in carboxyl- or carbamoyltransferase activity
Specific function:
This protein is a "fusion" protein encoding three enzymatic activities of the pyrimidine pathway (GATase, CPSase, and ATCase)
Gene Name:
URA2
Uniprot ID:
P07259
Molecular weight:
245124.0
Reactions
2 ATP + L-glutamine + HCO(3)(-) + H(2)O → 2 ADP + phosphate + L-glutamate + carbamoyl phosphate.
Carbamoyl phosphate + L-aspartate → phosphate + N-carbamoyl-L-aspartate.
General function:
Involved in ATP binding
Specific function:
2 ATP + L-glutamine + HCO(3)(-) + H(2)O = 2 ADP + phosphate + L-glutamate + carbamoyl phosphate
Gene Name:
CPA2
Uniprot ID:
P03965
Molecular weight:
123914.0
Reactions
2 ATP + L-glutamine + HCO(3)(-) + H(2)O → 2 ADP + phosphate + L-glutamate + carbamoyl phosphate.
General function:
Involved in CTP synthase activity
Specific function:
Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen
Gene Name:
URA7
Uniprot ID:
P28274
Molecular weight:
64709.80078
Reactions
ATP + UTP + NH(3) → ADP + phosphate + CTP.
General function:
Involved in glutamate-ammonia ligase activity
Specific function:
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine
Gene Name:
GLN1
Uniprot ID:
P32288
Molecular weight:
41705.60156
Reactions
ATP + L-glutamate + NH(3) → ADP + phosphate + L-glutamine.
General function:
Involved in biosynthetic process
Specific function:
Chorismate + L-glutamine = anthranilate + pyruvate + L-glutamate
Gene Name:
TRP2
Uniprot ID:
P00899
Molecular weight:
56767.0
Reactions
Chorismate + L-glutamine → anthranilate + pyruvate + L-glutamate.
General function:
Involved in catalytic activity
Specific function:
ATP + xanthosine 5'-phosphate + L-glutamine + H(2)O = AMP + diphosphate + GMP + L-glutamate
Gene Name:
GUA1
Uniprot ID:
P38625
Molecular weight:
58481.80078
Reactions
ATP + xanthosine 5'-phosphate + L-glutamine + H(2)O → AMP + diphosphate + GMP + L-glutamate.
General function:
Involved in asparagine synthase (glutamine-hydrolyzing) activity
Specific function:
ATP + L-aspartate + L-glutamine + H(2)O = AMP + diphosphate + L-asparagine + L-glutamate
Gene Name:
ASN1
Uniprot ID:
P49089
Molecular weight:
64469.60156
Reactions
ATP + L-aspartate + L-glutamine + H(2)O → AMP + diphosphate + L-asparagine + L-glutamate.
General function:
Involved in catalytic activity
Specific function:
Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate
Gene Name:
GLT1
Uniprot ID:
Q12680
Molecular weight:
238100.0
Reactions
2 L-glutamate + NAD(+) → L-glutamine + 2-oxoglutarate + NADH.
General function:
Involved in asparagine synthase (glutamine-hydrolyzing) activity
Specific function:
ATP + L-aspartate + L-glutamine + H(2)O = AMP + diphosphate + L-asparagine + L-glutamate
Gene Name:
ASN2
Uniprot ID:
P49090
Molecular weight:
64592.5
Reactions
ATP + L-aspartate + L-glutamine + H(2)O → AMP + diphosphate + L-asparagine + L-glutamate.
General function:
Involved in CTP synthase activity
Specific function:
Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Plays an important role in the regulation of phospholipid synthesis
Gene Name:
URA8
Uniprot ID:
P38627
Molecular weight:
63055.69922
Reactions
ATP + UTP + NH(3) → ADP + phosphate + CTP.
General function:
Involved in NAD+ synthase (glutamine-hydrolyzing) activity
Specific function:
ATP + deamido-NAD(+) + L-glutamine + H(2)O = AMP + diphosphate + NAD(+) + L-glutamate
Gene Name:
QNS1
Uniprot ID:
P38795
Molecular weight:
80684.89844
Reactions
ATP + deamido-NAD(+) + L-glutamine + H(2)O → AMP + diphosphate + NAD(+) + L-glutamate.
General function:
Involved in carbon-nitrogen ligase activity, with glutamine as amido-N-donor
Specific function:
Hydrolysis of urea to ammonia and CO(2)
Gene Name:
DUR1
Uniprot ID:
P32528
Molecular weight:
201830.0
Reactions
ATP + urea + HCO(3)(-) → ADP + phosphate + urea-1-carboxylate.
Urea-1-carboxylate + H(2)O → 2 CO(2) + 2 NH(3).
General function:
Involved in galactokinase activity
Specific function:
ATP + D-galactose = ADP + alpha-D-galactose 1- phosphate
Gene Name:
GAL1
Uniprot ID:
P04385
Molecular weight:
57943.80078
Reactions
ATP + D-galactose → ADP + alpha-D-galactose 1-phosphate.
General function:
Involved in UDP-glucose:hexose-1-phosphate uridylyltransferase activity
Specific function:
UDP-glucose + alpha-D-galactose 1-phosphate = alpha-D-glucose 1-phosphate + UDP-galactose
Gene Name:
GAL7
Uniprot ID:
P08431
Molecular weight:
42384.69922
Reactions
UDP-glucose + alpha-D-galactose 1-phosphate → alpha-D-glucose 1-phosphate + UDP-galactose.
General function:
Involved in sulfate adenylyltransferase (ATP) activity
Specific function:
Catalyzes the first intracellular reaction of sulfate assimilation, forming adenosine-5'-phosphosulfate (APS) from inorganic sulfate and ATP. Plays an important role in sulfate activation as a component of the biosynthesis pathway of sulfur- containing amino acids
Gene Name:
MET3
Uniprot ID:
P08536
Molecular weight:
57724.0
Reactions
ATP + sulfate → diphosphate + adenylyl sulfate.
General function:
Involved in ATP adenylyltransferase activity
Specific function:
Ap4A phosphorylase catabolizes Ap4N nucleotides (where N is A,C,G or U). Additionally this enzyme catalyzes the conversion of adenosine-5-phosphosulfate (AMPs) plus Pi to ADP plus sulfate, the exchange of NDP and phosphate and the synthesis of Ap4A from AMPs plus ATP
Gene Name:
APA1
Uniprot ID:
P16550
Molecular weight:
36492.19922
Reactions
ADP + ATP → phosphate + P(1),P(4)-bis(5'-adenosyl) tetraphosphate.
ADP + sulfate → phosphate + adenylyl sulfate.
Adenylylsulfate + ATP → P(1),P(4)-bis(5'-adenosyl)tetraphosphate + sulfate.
General function:
Involved in inositol trisphosphate 3-kinase activity
Specific function:
Has kinase activity and phosphorylates inositol-1,4,5- trisphosphate (Ins(1,4,5)P3) and inositol-1,3,4,5- tetrakisphosphate (Ins(1,3,4,5)P4). Has low kinase activity towards InsP6. Originally it was proposed that the ARGRI and ARGRIII proteins are more likely to be involved in the control of ARGRII activity
Gene Name:
ARG82
Uniprot ID:
P07250
Molecular weight:
40352.5
Reactions
ATP + 1D-myo-inositol 1,4,5-trisphosphate → ADP + 1D-myo-inositol 1,4,5,6-tetrakisphosphate.
ATP + 1D-myo-inositol 1,4,5,6-tetrakisphosphate → ADP + 1D-myo-inositol 1,3,4,5,6-pentakisphosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
Catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Also exhibits choline kinase activity but its preferred substrate is ethanolamine
Gene Name:
EKI1
Uniprot ID:
Q03764
Molecular weight:
61656.39844
Reactions
ATP + ethanolamine → ADP + O-phosphoethanolamine.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
Responsible for phosphatidylcholine synthesis via the CDP-choline pathway. Also exhibits ethanolamine kinase activity but at 14% efficiency compared with choline
Gene Name:
CKI1
Uniprot ID:
P20485
Molecular weight:
66316.0
Reactions
ATP + choline → ADP + O-phosphocholine.
General function:
Involved in 1-aminocyclopropane-1-carboxylate synthase activity
Specific function:
Catalyzes the irreversible transamination of the L- tryptophan metabolite L-kynurenine to form kynurenic acid (KA)
Gene Name:
BNA3
Uniprot ID:
P47039
Molecular weight:
50081.89844
Reactions
L-kynurenine + 2-oxoglutarate → 4-(2-aminophenyl)-2,4-dioxobutanoate + L-glutamate.
General function:
Involved in catalytic activity
Specific function:
Synthesis of fructose 2,6-bisphosphate
Gene Name:
PFK27
Uniprot ID:
Q12471
Molecular weight:
45317.10156
Reactions
ATP + D-fructose 6-phosphate → ADP + beta-D-fructose 2,6-bisphosphate.
General function:
Involved in catalytic activity
Specific function:
Synthesis of fructose 2,6-bisphosphate
Gene Name:
PFK26
Uniprot ID:
P40433
Molecular weight:
93416.20313
Reactions
ATP + D-fructose 6-phosphate → ADP + beta-D-fructose 2,6-bisphosphate.
General function:
Involved in adenylosuccinate synthase activity
Specific function:
Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first commited step in the biosynthesis of AMP from IMP
Gene Name:
ADE12
Uniprot ID:
P80210
Molecular weight:
48279.10156
Reactions
GTP + IMP + L-aspartate → GDP + phosphate + N(6)-(1,2-dicarboxyethyl)-AMP.
General function:
Involved in hydrolase activity
Specific function:
May eliminate potentially toxic dinucleoside polyphosphates during sporulation. Most active against diadenosine 5',5'''-P1,P6-hexaphosphate (Ap6A). Can also hydrolyze diadenosine 5',5'''-P1,P5-pentaphosphate (Ap5A), adenosine 5'-pentaphosphate, and adenosine 5'-tetraphosphate are also substrates, but not diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) or other dinucleotides, mononucleotides, nucleotide sugars, or nucleotide alcohols. Also cleaves a beta-phosphate from the diphosphate groups in PP-InsP5 (diphosphoinositol pentakisphosphate) and [PP]2-InsP4 (bisdiphosphoinositol tetrakisphosphate)
Gene Name:
DDP1
Uniprot ID:
Q99321
Molecular weight:
21572.30078
Reactions
Diphospho-myo-inositol polyphosphate + H(2)O → myo-inositol polyphosphate + phosphate.
General function:
Involved in inositol trisphosphate 3-kinase activity
Specific function:
Converts inositol hexakisphosphate (InsP6) to diphosphoinositol pentakisphosphate (InsP7/PP-InsP5). Involved in phosphate regulation and polyphosphate accumulation. Required for resistance to salt stress, cell wall integrity, vacuole morphogenesis, and telomere maintenance
Gene Name:
KCS1
Uniprot ID:
Q12494
Molecular weight:
119549.0
Reactions
ATP + 1D-myo-inositol hexakisphosphate → ADP + 5-diphospho-1D-myo-inositol (1,2,3,4,6)pentakisphosphate.
ATP + 1D-myo-inositol 1,3,4,5,6-pentakisphosphate → ADP + diphospho-1D-myo-inositol tetrakisphosphate (isomeric configuration unknown).
General function:
Involved in acid phosphatase activity
Specific function:
Bifunctional inositol kinase that catalyzes the formation of diphosphoinositol pentakisphosphate (InsP7 or PP- InsP5) and bi-diphosphoinositol tetrakisphosphate (InsP8 or PP2- InsP4). Converts inositolitol hexakisphosphate (InsP6) to InsP7. Also able to convert InsP7 to InsP8. Probably specifically mediates the formation of 4PP-InsP5 and 6PP-InsP5 InsP7 isomers but not of 5PP-IP5 InsP7 isomer. Required for maintaining celllular integrity, normal growth and interactions with the ARP complex. Acts as a regulator of the PHO80-PHO85 cyclin/cyclin-dependent kinase (CDK) complex, thereby regulating signaling of phosphate availability. Required for the function of the cortical actin cytoskeleton, possibly by participating in correct F-actin localization and ensuring polarized growth
Gene Name:
VIP1
Uniprot ID:
Q06685
Molecular weight:
129754.0
Reactions
ATP + 1D-myo-inositol hexakisphosphate → ADP + 5-diphospho-1D-myo-inositol (1,2,3,4,6)pentakisphosphate.
ATP + 1D-myo-inositol 1,3,4,5,6-pentakisphosphate → ADP + diphospho-1D-myo-inositol tetrakisphosphate (isomeric configuration unknown).
ATP + 1D-myo-inositol 5-diphosphate pentakisphosphate → ADP + 1D-myo-inositol bisdiphosphate tetrakisphosphate (isomeric configuration unknown).
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidation of D-arabinose, L-xylose, L- fucose and L-galactose in the presence of NADP+
Gene Name:
ARA1
Uniprot ID:
P38115
Molecular weight:
38883.19922
Reactions
D-arabinose + NAD(P)(+) → D-arabinono-1,4-lactone + NAD(P)H.
General function:
Involved in oxidoreductase activity
Specific function:
D-arabinose + NAD(+) = D-arabinono-1,4-lactone + NADH
Gene Name:
ARA2
Uniprot ID:
Q04212
Molecular weight:
38220.0
Reactions
D-arabinose + NAD(+) → D-arabinono-1,4-lactone + NADH.
General function:
Involved in iron ion binding
Specific function:
Catalyzes C14-demethylation of lanosterol which is critical for ergosterol biosynthesis. It transforms lanosterol into 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol
Gene Name:
ERG11
Uniprot ID:
P10614
Molecular weight:
60719.80078
Reactions
Obtusifoliol + 3 O(2) + 3 NADPH → 4-alpha-methyl-5-alpha-ergosta-8,14,24(28)-trien-3-beta-ol + formate + 3 NADP(+) + 4 H(2)O.
General function:
Involved in ATP binding
Specific function:
ATP + gamma-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione
Gene Name:
GSH2
Uniprot ID:
Q08220
Molecular weight:
55814.69922
Reactions
ATP + gamma-L-glutamyl-L-cysteine + glycine → ADP + phosphate + glutathione.
General function:
Involved in 5-aminolevulinate synthase activity
Specific function:
Succinyl-CoA + glycine = 5-aminolevulinate + CoA + CO(2)
Gene Name:
HEM1
Uniprot ID:
P09950
Molecular weight:
59361.69922
Reactions
Succinyl-CoA + glycine → 5-aminolevulinate + CoA + CO(2).
General function:
Involved in catalytic activity
Specific function:
ATP + 5-phospho-D-ribosylamine + glycine = ADP + phosphate + N(1)-(5-phospho-D-ribosyl)glycinamide
Gene Name:
ADE5
Uniprot ID:
P07244
Molecular weight:
86067.39844
Reactions
ATP + 5-phospho-D-ribosylamine + glycine → ADP + phosphate + N(1)-(5-phospho-D-ribosyl)glycinamide.
ATP + 2-(formamido)-N(1)-(5-phospho-D-ribosyl)acetamidine → ADP + phosphate + 5-amino-1-(5-phospho-D-ribosyl)imidazole.
General function:
Involved in oxidoreductase activity
Specific function:
Lipoamide dehydrogenase is a component of the alpha- ketoacid dehydrogenase complexes. This includes the pyruvate dehydrogenase complex, which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). Acts also as component of the glycine cleavage system (glycine decarboxylase complex), which catalyzes the degradation of glycine
Gene Name:
LPD1
Uniprot ID:
P09624
Molecular weight:
54009.69922
Reactions
Protein N(6)-(dihydrolipoyl)lysine + NAD(+) → protein N(6)-(lipoyl)lysine + NADH.
General function:
Involved in methyltransferase activity
Specific function:
Required for the methylation step in diphthamide biosynthesis
Gene Name:
DPH5
Uniprot ID:
P32469
Molecular weight:
33847.0
Reactions
3 S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine → 3 S-adenosyl-L-homocysteine + 2-(3-carboxy-3-(trimethylammonio)propyl)-L-histidine.
General function:
Involved in glycerone kinase activity
Specific function:
ATP + glycerone = ADP + glycerone phosphate
Gene Name:
DAK2
Uniprot ID:
P43550
Molecular weight:
62134.0
Reactions
ATP + glycerone → ADP + glycerone phosphate.
General function:
Involved in glycerone kinase activity
Specific function:
ATP + glycerone = ADP + glycerone phosphate
Gene Name:
DAK1
Uniprot ID:
P54838
Molecular weight:
62206.10156
Reactions
ATP + glycerone → ADP + glycerone phosphate.
General function:
Involved in oxidoreductase activity
Specific function:
Unknown function which seems to be not essential
Gene Name:
GCY1
Uniprot ID:
P14065
Molecular weight:
35078.89844
Reactions
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NAD(+)-dependent cleavage of saccharopine to L-lysine and 2-oxoglutarate
Gene Name:
LYS1
Uniprot ID:
P38998
Molecular weight:
41464.39844
Reactions
N(6)-(L-1,3-dicarboxypropyl)-L-lysine + NAD(+) + H(2)O → L-lysine + 2-oxoglutarate + NADH.
General function:
Involved in binding
Specific function:
N(6)-(L-1,3-dicarboxypropyl)-L-lysine + NADP(+) + H(2)O = L-glutamate + L-2-aminoadipate 6-semialdehyde + NADPH
Gene Name:
LYS9
Uniprot ID:
P38999
Molecular weight:
48917.30078
Reactions
N(6)-(L-1,3-dicarboxypropyl)-L-lysine + NADP(+) + H(2)O → L-glutamate + L-2-aminoadipate 6-semialdehyde + NADPH.
General function:
Involved in methyltransferase activity
Specific function:
Siroheme synthase involved in methionine biosynthesis
Gene Name:
MET1
Uniprot ID:
P36150
Molecular weight:
66124.70313
Reactions
S-adenosyl-L-methionine + uroporphyrinogen III → S-adenosyl-L-homocysteine + precorrin-1.
S-adenosyl-L-methionine + precorrin-1 → S-adenosyl-L-homocysteine + precorrin-2.
General function:
Involved in zinc ion binding
Specific function:
An alcohol + NAD(+) = an aldehyde or ketone + NADH
Gene Name:
ADH3
Uniprot ID:
P07246
Molecular weight:
40369.19922
Reactions
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
An aldehyde + NAD(P)(+) + H(2)O = an acid + NAD(P)H
Gene Name:
ALD2
Uniprot ID:
P47771
Molecular weight:
55187.39844
Reactions
An aldehyde + NAD(P)(+) + H(2)O → an acid + NAD(P)H.
General function:
Involved in zinc ion binding
Specific function:
Oxidizes long-chain alcohols and, in the presence of glutathione, is able to oxidize formaldehyde. Is responsible for yeast resistance to formaldehyde
Gene Name:
SFA1
Uniprot ID:
P32771
Molecular weight:
41041.69922
Reactions
S-(hydroxymethyl)glutathione + NAD(P)(+) → S-formylglutathione + NAD(P)H.
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
An aldehyde + NAD(+) + H(2)O = an acid + NADH
Gene Name:
ALD4
Uniprot ID:
P46367
Molecular weight:
56723.19922
Reactions
An aldehyde + NAD(+) + H(2)O → an acid + NADH.
General function:
Involved in magnesium ion binding
Specific function:
Second most abundant of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3) able to decarboxylate more complex 2-oxo acids (alpha-keto-acids) than pyruvate, which seem mainly involved in amino acid catabolism. Here the enzyme catalyzes the decarboxylation of amino acids, which, in a first step, have been transaminated to the corresponding 2-oxo acids. In a third step, the resulting aldehydes are reduced to alcohols, collectively referred to as fusel oils or alcohols. Its preferred substrates are the transaminated amino acids valine, isoleucine, phenylalanine, and tryptophan, whereas leucine is no substrate. In a side-reaction the carbanionic intermediate (or active aldehyde) generated by decarboxylation or by activation of an aldehyde can react with an aldehyde via condensation (or carboligation) yielding a 2-hydroxy ketone, collectively called acyloins
Gene Name:
PDC5
Uniprot ID:
P16467
Molecular weight:
61911.60156
Reactions
A 2-oxo acid → an aldehyde + CO(2).
3-(indol-3-yl)pyruvate → 2-(indol-3-yl)acetaldehyde + CO(2).
Phenylpyruvate → phenylacetaldehyde + CO(2).
Pyruvate → Acetaldehyde + CO(2).
A 2-oxo acid + an aldehyde → A 2-hydroxy ketone + CO(2).
An aldehyde + an aldehyde → A 2-hydroxy ketone.
General function:
Involved in magnesium ion binding
Specific function:
Minor of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3) able to decarboxylate more complex 2-oxo acids (alpha-keto-acids) than pyruvate, which seem mainly involved in amino acid catabolism. Here the enzyme catalyzes the decarboxylation of amino acids, which, in a first step, have been transaminated to the corresponding 2-oxo acids. In a third step, the resulting aldehydes are reduced to alcohols, collectively referred to as fusel oils or alcohols. Its preferred substrates are the transaminated amino acids valine, isoleucine, phenylalanine, and tryptophan, whereas leucine is no substrate. In a side-reaction the carbanionic intermediate (or active aldehyde) generated by decarboxylation or by activation of an aldehyde can react with an aldehyde via condensation (or carboligation) yielding a 2-hydroxy ketone, collectively called acyloins. The expression level of this protein in the presence of fermentable carbon sources is so low that it can not compensate for the other two pyruvate decarboxylases to sustain fermentation
Gene Name:
PDC6
Uniprot ID:
P26263
Molecular weight:
61579.89844
Reactions
A 2-oxo acid → an aldehyde + CO(2).
3-(indol-3-yl)pyruvate → 2-(indol-3-yl)acetaldehyde + CO(2).
Phenylpyruvate → phenylacetaldehyde + CO(2).
Pyruvate → Acetaldehyde + CO(2).
A 2-oxo acid + an aldehyde → A 2-hydroxy ketone + CO(2).
An aldehyde + an aldehyde → A 2-hydroxy ketone.
General function:
Involved in oxidoreductase activity
Specific function:
An aldehyde + NAD(P)(+) + H(2)O = an acid + NAD(P)H
Gene Name:
ALD3
Uniprot ID:
P54114
Molecular weight:
55384.80078
Reactions
An aldehyde + NAD(P)(+) + H(2)O → an acid + NAD(P)H.
General function:
Involved in oxidoreductase activity
Specific function:
An aldehyde + NAD(+) + H(2)O = an acid + NADH
Gene Name:
ALD6
Uniprot ID:
P54115
Molecular weight:
54413.69922
Reactions
An aldehyde + NAD(+) + H(2)O → an acid + NADH.
General function:
Involved in zinc ion binding
Specific function:
This isozyme preferentially catalyzes the conversion of primary unbranched alcohols to their corresponding aldehydes. Also also shows activity toward secondary alcohols
Gene Name:
ADH1
Uniprot ID:
P00330
Molecular weight:
36849.0
Reactions
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
Minor mitochondrial aldehyde dehydrogenase isoform. Plays a role in regulation or biosynthesis of electron transport chain components. Involved in the biosynthesis of acetate during anaerobic growth on glucose
Gene Name:
ALD5
Uniprot ID:
P40047
Molecular weight:
56620.39844
Reactions
An aldehyde + NAD(+) + H(2)O → an acid + NADH.
An aldehyde + NADP(+) + H(2)O → an acid + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Reduces acetaldehyde to ethanol during glucose fermentation. Specific for ethanol. Shows drastically reduced activity towards primary alcohols from 4 carbon atoms upward. Isomers of aliphatic alcohol, as well as secondary alcohols and glycerol are not used at all
Gene Name:
ADH4
Uniprot ID:
P10127
Molecular weight:
41141.69922
Reactions
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in magnesium ion binding
Specific function:
Major of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3) able to decarboxylate more complex 2-oxo acids (alpha-ketoacids) than pyruvate, which seem mainly involved in amino acid catabolism. Here the enzyme catalyzes the decarboxylation of amino acids, which, in a first step, have been transaminated to the corresponding 2-oxo acids. In a third step, the resulting aldehydes are reduced to alcohols, collectively referred to as fusel oils or alcohols. Its preferred substrates are the transaminated amino acids valine, isoleucine, phenylalanine, and tryptophan, whereas leucine is no substrate. In a side-reaction the carbanionic intermediate (or active aldehyde) generated by decarboxylation or by activation of an aldehyde can react with an aldehyde via condensation (or carboligation) yielding a 2-hydroxy ketone, collectively called acyloins
Gene Name:
PDC1
Uniprot ID:
P06169
Molecular weight:
61494.89844
Reactions
A 2-oxo acid → an aldehyde + CO(2).
3-(indol-3-yl)pyruvate → 2-(indol-3-yl)acetaldehyde + CO(2).
Phenylpyruvate → phenylacetaldehyde + CO(2).
Pyruvate → Acetaldehyde + CO(2).
A 2-oxo acid + an aldehyde → A 2-hydroxy ketone + CO(2).
An aldehyde + an aldehyde → A 2-hydroxy ketone.
General function:
Involved in zinc ion binding
Specific function:
An alcohol + NAD(+) = an aldehyde or ketone + NADH
Gene Name:
ADH5
Uniprot ID:
P38113
Molecular weight:
37647.89844
Reactions
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in zinc ion binding
Specific function:
This isozyme preferentially catalyzes the conversion of ethanol to acetaldehyde. Acts on a variety of primary unbranched aliphatic alcohols
Gene Name:
ADH2
Uniprot ID:
P00331
Molecular weight:
36731.60156
Reactions
An alcohol + NAD(+) → an aldehyde or ketone + NADH.
General function:
Involved in catalytic activity
Specific function:
Bifunctional enzyme that catalyzes the enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK-MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene)
Gene Name:
UTR4
Uniprot ID:
P32626
Molecular weight:
25187.19922
Reactions
5-(methylthio)-2,3-dioxopentyl phosphate + H(2)O → 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + phosphate.
2-Phosphoglycolate + H2O → glycolate + phosphate
General function:
Involved in catalytic activity
Specific function:
Orotidine 5'-phosphate = UMP + CO(2)
Gene Name:
URA3
Uniprot ID:
P03962
Molecular weight:
29239.30078
Reactions
Orotidine 5'-phosphate → UMP + CO(2).
General function:
Involved in magnesium ion binding
Specific function:
May function in the production of NADPH for fatty acid and sterol synthesis
Gene Name:
IDP3
Uniprot ID:
P53982
Molecular weight:
47856.0
Reactions
Isocitrate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
Oxalosuccinate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
General function:
Involved in magnesium ion binding
Specific function:
Mitochondrial IDP1 may regulate flux through the tricarboxylic acid cycle and respiration. Its probably critical function is the production of NADPH
Gene Name:
IDP1
Uniprot ID:
P21954
Molecular weight:
48189.89844
Reactions
Isocitrate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
Oxalosuccinate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
General function:
Involved in magnesium ion binding
Specific function:
May function in the production of NADPH for fatty acid and sterol synthesis
Gene Name:
IDP2
Uniprot ID:
P41939
Molecular weight:
46561.89844
Reactions
Isocitrate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
Oxalosuccinate + NADP(+) → 2-oxoglutarate + CO(2) + NADPH.
General function:
Involved in dihydroorotase activity
Specific function:
(S)-dihydroorotate + H(2)O = N-carbamoyl-L- aspartate
Gene Name:
URA4
Uniprot ID:
P20051
Molecular weight:
40313.0
Reactions
(S)-dihydroorotate + H(2)O → N-carbamoyl-L-aspartate.
General function:
Involved in glutamate N-acetyltransferase activity
Specific function:
Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis:the synthesis of acetylglutamate from glutamate and acetyl-CoA, and of ornithine by transacetylation between acetylornithine and glutamate
Gene Name:
ARG7
Uniprot ID:
Q04728
Molecular weight:
47848.30078
Reactions
N(2)-acetyl-L-ornithine + L-glutamate → L-ornithine + N-acetyl-L-glutamate.
Acetyl-CoA + L-glutamate → CoA + N-acetyl-L-glutamate.
General function:
Involved in 3-dehydroquinate dehydratase activity
Specific function:
The AROM polypeptide catalyzes 5 consecutive enzymatic reactions in prechorismate polyaromatic amino acid biosynthesis
Gene Name:
ARO1
Uniprot ID:
P08566
Molecular weight:
174754.0
Reactions
3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate → 3-dehydroquinate + phosphate.
3-dehydroquinate → 3-dehydroshikimate + H(2)O.
Shikimate + NADP(+) → 3-dehydroshikimate + NADPH.
ATP + shikimate → ADP + shikimate 3-phosphate.
Phosphoenolpyruvate + 3-phosphoshikimate → phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate.
General function:
Involved in ureidoglycolate hydrolase activity
Specific function:
Utilization of purines as secondary nitrogen sources, when primary sources are limiting
Gene Name:
DAL3
Uniprot ID:
P32459
Molecular weight:
21726.59961
Reactions
(S)-ureidoglycolate + H(2)O → glyoxylate + 2 NH(3) + CO(2).
General function:
Involved in catalytic activity
Specific function:
This isozyme is necessary for growth on acetate as sole C-source
Gene Name:
MLS1
Uniprot ID:
P30952
Molecular weight:
62790.60156
Reactions
Acetyl-CoA + H(2)O + glyoxylate → (S)-malate + CoA.
General function:
Involved in catalytic activity
Specific function:
This isozyme is involved in the degradation of allantoin (purine catabolism)
Gene Name:
DAL7
Uniprot ID:
P21826
Molecular weight:
62793.39844
Reactions
Acetyl-CoA + H(2)O + glyoxylate → (S)-malate + CoA.
General function:
Involved in aspartate-semialdehyde dehydrogenase activity
Specific function:
This enzyme catalyzes the second step in the common metabolic pathway to synthesize Thr and Met from Asp
Gene Name:
HOM2
Uniprot ID:
P13663
Molecular weight:
39543.30078
Reactions
L-aspartate 4-semialdehyde + phosphate + NADP(+) → L-4-aspartyl phosphate + NADPH.
General function:
Involved in binding
Specific function:
Responsible for the reduction of the keto group on the C-3 of sterols. Also facilitates the association of ERG7 with lipid particles preventing its digestion in the endoplasmic reticulum and the lipid particles
Gene Name:
ERG27
Uniprot ID:
Q12452
Molecular weight:
39724.39844
Reactions
4-alpha-methyl-5-alpha-cholest-7-en-3-beta-ol + NADP(+) → 4-alpha-methyl-5-alpha-cholest-7-en-3-one + NADPH.
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Thiamine-regulated, high affinity import carrier of pyridoxine, pyridoxal and pyridoxamine
Gene Name:
TPN1
Uniprot ID:
P53099
Molecular weight:
64545.80078
General function:
Involved in catalytic activity
Specific function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. Involved in cell cycle regulation
Gene Name:
BAT2
Uniprot ID:
P47176
Molecular weight:
41624.39844
Reactions
L-leucine + 2-oxoglutarate → 4-methyl-2-oxopentanoate + L-glutamate.
2-oxoglutaric acid + L-isoleucine → (S)-3-methyl-2-oxopentanoic acid + L-glutamic acid.
2-oxoglutaric acid + L-valine → 3-methyl-2-oxobutanoic acid + L-glutamic acid.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. Appears to be involved in the regulation of the transition from G1 to S phase in the cell cycle. High copy suppressor of a temperature-sensitive mutation in the ABC transporter, ATM1
Gene Name:
BAT1
Uniprot ID:
P38891
Molecular weight:
43595.69922
Reactions
L-leucine + 2-oxoglutarate → 4-methyl-2-oxopentanoate + L-glutamate.
2-oxoglutaric acid + L-isoleucine → (S)-3-methyl-2-oxopentanoic acid + L-glutamic acid.
2-oxoglutaric acid + L-valine → 3-methyl-2-oxobutanoic acid + L-glutamic acid.
General function:
Involved in oxidoreductase activity
Specific function:
(R)-2,3-dihydroxy-3-methylbutanoate + NADP(+) = (S)-2-hydroxy-2-methyl-3-oxobutanoate + NADPH
Gene Name:
ILV5
Uniprot ID:
P06168
Molecular weight:
44368.10156
Reactions
(R)-2,3-dihydroxy-3-methylbutanoate + NADP(+) → (S)-2-hydroxy-2-methyl-3-oxobutanoate + NADPH.
(2R,3R)-2,3-dihydroxy-3-methylpentanoate + NADP(+) → (S)-2-hydroxy-2-ethyl-3-oxobutanoate + NADPH.
General function:
Involved in ferrochelatase activity
Specific function:
Catalyzes the ferrous insertion into protoporphyrin IX
Gene Name:
HEM15
Uniprot ID:
P16622
Molecular weight:
44595.80078
Reactions
Protoheme + 2 H(+) → protoporphyrin + Fe(2+).
General function:
Involved in UDP-N-acetylglucosamine diphosphorylase act
Specific function:
UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine
Gene Name:
QRI1
Uniprot ID:
P43123
Molecular weight:
53475.60156
Reactions
UTP + N-acetyl-alpha-D-glucosamine 1-phosphate → diphosphate + UDP-N-acetyl-D-glucosamine.
General function:
Involved in N-acetyltransferase activity
Specific function:
Acetyl-CoA + D-glucosamine 6-phosphate = CoA + N-acetyl-D-glucosamine 6-phosphate
Gene Name:
GNA1
Uniprot ID:
P43577
Molecular weight:
18134.80078
Reactions
Acetyl-CoA + D-glucosamine 6-phosphate → CoA + N-acetyl-D-glucosamine 6-phosphate.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + 2-oxoglutarate = (R)-2- hydroxybutane-1,2,4-tricarboxylate + CoA
Gene Name:
LYS21
Uniprot ID:
Q12122
Molecular weight:
48593.80078
Reactions
Acetyl-CoA + H(2)O + 2-oxoglutarate → (R)-2-hydroxybutane-1,2,4-tricarboxylate + CoA.
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. Required for storage lipid synthesis. May be involved in lipid particle synthesis from the endoplasmic reticulum and ergosterol biosynthesis
Gene Name:
DGA1
Uniprot ID:
Q08650
Molecular weight:
47710.89844
Reactions
Acyl-CoA + 1,2-diacylglycerol → CoA + triacylglycerol.
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Catalyzes the conversion of dihydroceramide and also phytoceramide to dihydrosphingosine or phytosphingosine. Prefers dihydroceramide. Very low reverse hydrolysis activity, catalyzing synthesis of dihydroceramide from fatty acid and dihydrosphingosine. Is not responsible for the breakdown of unsaturated ceramide. May play a role in heat stress response
Gene Name:
YDC1
Uniprot ID:
Q02896
Molecular weight:
37230.5
Reactions
General function:
Involved in 2-isopropylmalate synthase activity
Specific function:
Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3-hydroxy-4-methylpentanoate (2-isopropylmalate). Redundant to LEU4, responsible of about 20% of alpha-IPMS activity. Involved in leucine synthesis
Gene Name:
LEU9
Uniprot ID:
Q12166
Molecular weight:
67199.60156
Reactions
Acetyl-CoA + 3-methyl-2-oxobutanoate + H(2)O → (2S)-2-isopropylmalate + CoA.
General function:
Involved in fatty acid elongase activity
Specific function:
Involved in synthesis of 1,3-beta-glucan. Could be a subunit of 1,3-beta-glucan synthase. Could be also a component of the membrane bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Appears to be involved in the elongation of fatty acids up to 24 carbons. Appears to have the highest affinity for substrates with chain length less than 22 carbons
Gene Name:
FEN1
Uniprot ID:
P25358
Molecular weight:
40001.80078
Reactions
Acyl-CoA + malonyl-CoA → 3-oxoacyl-CoA + CoA + CO(2).
General function:
Involved in catalytic activity
Specific function:
Presumably involved in regulating the intracellular acetyl-CoA pool for fatty acid and cholesterol synthesis and fatty acid oxidation. It may be involved in overall regulation of acetylation during melatonin synthesis
Gene Name:
ACH1
Uniprot ID:
P32316
Molecular weight:
58711.5
Reactions
Acetyl-CoA + H(2)O → CoA + acetate.
General function:
Involved in hydroxymethylglutaryl-CoA reductase (NADPH) activity
Specific function:
This transmembrane glycoprotein is involved in the control of cholesterol biosynthesis. It is the rate-limiting enzyme of the sterol biosynthesis
Gene Name:
HMG1
Uniprot ID:
P12683
Molecular weight:
115624.0
Reactions
(R)-mevalonate + CoA + 2 NADP(+) → (S)-3-hydroxy-3-methylglutaryl-CoA + 2 NADPH.
General function:
Involved in hydroxymethylglutaryl-CoA reductase (NADPH) activity
Specific function:
This transmembrane glycoprotein is involved in the control of cholesterol biosynthesis. It is the rate-limiting enzyme of the sterol biosynthesis
Gene Name:
HMG2
Uniprot ID:
P12684
Molecular weight:
115691.0
Reactions
(R)-mevalonate + CoA + 2 NADP(+) → (S)-3-hydroxy-3-methylglutaryl-CoA + 2 NADPH.
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Component of serine palmitoyltransferase (SPT), which catalyzes the committed step in the synthesis of sphingolipids, the condensation of serine with palmitoyl CoA to form the long chain base 3-ketosphinganine
Gene Name:
LCB1
Uniprot ID:
P25045
Molecular weight:
62206.60156
Reactions
Palmitoyl-CoA + L-serine → CoA + 3-dehydro-D-sphinganine + CO(2).
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Acyl-CoA + O(2) = trans-2,3-dehydroacyl-CoA + H(2)O(2)
Gene Name:
POX1
Uniprot ID:
P13711
Molecular weight:
84041.39844
Reactions
Acyl-CoA + O(2) → trans-2,3-dehydroacyl-CoA + H(2)O(2).
General function:
Involved in hydroxymethylglutaryl-CoA synthase activity
Specific function:
This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase
Gene Name:
ERG13
Uniprot ID:
P54839
Molecular weight:
55013.10156
Reactions
Acetyl-CoA + H(2)O + acetoacetyl-CoA → (S)-3-hydroxy-3-methylglutaryl-CoA + CoA.
General function:
Involved in dephospho-CoA kinase activity
Specific function:
Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A
Gene Name:
CAB5
Uniprot ID:
Q03941
Molecular weight:
27339.5
Reactions
ATP + 3'-dephospho-CoA → ADP + CoA.
General function:
Involved in protein binding
Specific function:
Component of the ceramide synthase complex required for C26-CoA-dependent ceramide synthesis. Redundant with LAC1. Facilitates ER-to-Golgi transport of GPI-anchored proteins. Involved in the aging process. Deletion of LAG1 results in a pronounced increase (approximately 50%) in mean and in maximum life span
Gene Name:
LAG1
Uniprot ID:
P38703
Molecular weight:
48454.10156
Reactions
Acyl-CoA + sphingosine → CoA + N-acylsphingosine.
General function:
Involved in 2-isopropylmalate synthase activity
Specific function:
Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3-hydroxy-4-methylpentanoate (2-isopropylmalate)
Gene Name:
LEU4
Uniprot ID:
P06208
Molecular weight:
68408.29688
Reactions
Acetyl-CoA + 3-methyl-2-oxobutanoate + H(2)O → (2S)-2-isopropylmalate + CoA.
General function:
Involved in fatty acid elongase activity
Specific function:
May be a membrane bound enzyme involved in the highly specific elongation of saturated 14-carbon fatty acids (14:0) to 16-carbon species (16:0)
Gene Name:
ELO1
Uniprot ID:
P39540
Molecular weight:
36233.60156
Reactions
Acyl-CoA + malonyl-CoA → 3-oxoacyl-CoA + CoA + CO(2).
General function:
Involved in acyltransferase activity
Specific function:
May be an acyltransferase with an altered substrate specificity that enables it to use a C-26-CoA in place of the C-16 or C-18-CoAs used by the wild-type protein
Gene Name:
SLC1
Uniprot ID:
P33333
Molecular weight:
33886.69922
Reactions
Acyl-CoA + 1-acyl-sn-glycerol 3-phosphate → CoA + 1,2-diacyl-sn-glycerol 3-phosphate.
General function:
Involved in acyl carrier activity
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis. May be involved in the synthesis of very-long-chain fatty acids. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain
Gene Name:
ACP1
Uniprot ID:
P32463
Molecular weight:
13942.5
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + 2-oxoglutarate = (R)-2- hydroxybutane-1,2,4-tricarboxylate + CoA
Gene Name:
LYS20
Uniprot ID:
P48570
Molecular weight:
47098.39844
Reactions
Acetyl-CoA + H(2)O + 2-oxoglutarate → (R)-2-hydroxybutane-1,2,4-tricarboxylate + CoA.
General function:
Involved in transferase activity, transferring acyl groups other than amino-acyl groups
Specific function:
Acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA
Gene Name:
POT1
Uniprot ID:
P27796
Molecular weight:
44729.89844
Reactions
Acyl-CoA + acetyl-CoA → CoA + 3-oxoacyl-CoA.
General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for:[acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase
Gene Name:
FAS1
Uniprot ID:
P07149
Molecular weight:
228689.0
Reactions
Acetyl-CoA + n malonyl-CoA + 2n NADH + 2n NADPH → long-chain-acyl-CoA + n CoA + n CO(2) + 2n NAD(+) + 2n NADP(+).
Acetyl-CoA + [acyl-carrier-protein] → CoA + acetyl-[acyl-carrier-protein].
Malonyl-CoA + [acyl-carrier-protein] → CoA + malonyl-[acyl-carrier-protein].
(3R)-3-hydroxypalmitoyl-[acyl-carrier-protein] → hexadec-2-enoyl-[acyl-carrier-protein] + H(2)O.
Acyl-[acyl-carrier-protein] + NAD(+) → trans-2,3-dehydroacyl-[acyl-carrier-protein] + NADH.
Oleoyl-[acyl-carrier-protein] + H(2)O → [acyl-carrier-protein] + oleate.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT3
Uniprot ID:
P43635
Molecular weight:
53810.69922
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
propanoyl-CoA + H2O + oxaloacetate → (2R,3S)-2-hydroxybutane-1,2,3-tricarboxylate + CoA
General function:
Involved in hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides
Specific function:
Hydrolyzes phytoceramide and also dihydroceramide into phytosphingosine or dihydrosphingosine. Prefers phytoceramide. Has also reverse hydrolysis activity, catalyzing synthesis of phytoceramide and dihydroceramide from palmitic acid and phytosphingosine or dihydrosphingosine. Is not responsible for the breakdown of unsaturated ceramide
Gene Name:
YPC1
Uniprot ID:
P38298
Molecular weight:
36419.39844
Reactions
General function:
Involved in acyltransferase activity
Specific function:
G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase
Gene Name:
GPT1
Uniprot ID:
P32784
Molecular weight:
85693.5
Reactions
Acyl-CoA + sn-glycerol 3-phosphate → CoA + 1-acyl-sn-glycerol 3-phosphate.
Acyl-CoA + glycerone phosphate → CoA + acylglycerone phosphate.
General function:
Involved in magnesium ion binding
Specific function:
Transfers the 4'-phosphopantetheine moiety from coenzyme A to a Ser of mitochondrial acyl-carrier-protein
Gene Name:
PPT2
Uniprot ID:
Q12036
Molecular weight:
19973.0
Reactions
CoA-(4'-phosphopantetheine) + apo-[acyl-carrier-protein] → adenosine 3',5'-bisphosphate + holo-[acyl-carrier-protein].
General function:
Involved in identical protein binding
Specific function:
Component of the ceramide synthase complex required for C26-CoA-dependent ceramide synthesis. Redundant with LAG1. Facilitates ER-to-Golgi transport of GPI-anchored proteins
Gene Name:
LAC1
Uniprot ID:
P28496
Molecular weight:
48991.60156
Reactions
Acyl-CoA + sphingosine → CoA + N-acylsphingosine.
General function:
Involved in acyltransferase activity
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2)
Gene Name:
PDA2
Uniprot ID:
P12695
Molecular weight:
51817.5
Reactions
Acetyl-CoA + enzyme N(6)-(dihydrolipoyl)lysine → CoA + enzyme N(6)-(S-acetyldihydrolipoyl)lysine.
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH
Gene Name:
TES1
Uniprot ID:
P41903
Molecular weight:
40259.39844
Reactions
Palmitoyl-CoA + H(2)O → CoA + palmitate.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT2
Uniprot ID:
P08679
Molecular weight:
51412.89844
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT1
Uniprot ID:
P00890
Molecular weight:
53359.60156
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
General function:
Involved in arginine biosynthetic process
Specific function:
N-acetylglutamate synthase involved in arginine biosynthesis
Gene Name:
ARG2
Uniprot ID:
P40360
Molecular weight:
65609.5
Reactions
Acetyl-CoA + L-glutamate → CoA + N-acetyl-L-glutamate.
General function:
Involved in glycylpeptide N-tetradecanoyltransferase activity
Specific function:
Adds a myristoyl group to the N-terminal glycine residue of certain cellular proteins. Substrate specificity requires an N- terminal glycine in the nascent polypeptide substrates. Uncharged amino acids are preferred at position 2 while neutral residues are favored at positions 3 and 4. Ser is present at position 5 in almost all known N-myristoyl proteins and Lys is commonly encountered at postion 6
Gene Name:
NMT1
Uniprot ID:
P14743
Molecular weight:
52837.10156
Reactions
Tetradecanoyl-CoA + glycylpeptide → CoA + N-tetradecanoylglycylpeptide.
General function:
Involved in acyltransferase activity
Specific function:
G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase
Gene Name:
GPT2
Uniprot ID:
P36148
Molecular weight:
83644.0
Reactions
Acyl-CoA + sn-glycerol 3-phosphate → CoA + 1-acyl-sn-glycerol 3-phosphate.
Acyl-CoA + glycerone phosphate → CoA + acylglycerone phosphate.
General function:
Involved in cysteine biosynthetic process from serine
Specific function:
O(3)-acetyl-L-serine + H(2)S = L-cysteine + acetate
Gene Name:
Not Available
Uniprot ID:
P53206
Molecular weight:
42800.5
Reactions
O(3)-acetyl-L-serine + H(2)S → L-cysteine + acetate.
General function:
Involved in pyridoxal phosphate binding
Specific function:
O(4)-succinyl-L-homoserine + L-cysteine = L- cystathionine + succinate
Gene Name:
Not Available
Uniprot ID:
Q04533
Molecular weight:
74312.70313
Reactions
O(4)-succinyl-L-homoserine + L-cysteine → L-cystathionine + succinate.
General function:
Involved in pyridoxal phosphate binding
Specific function:
Transforms O-acetylhomoserine into homocysteine and O- acetylserine into cysteine
Gene Name:
MET17
Uniprot ID:
P06106
Molecular weight:
48671.39844
Reactions
O-acetyl-L-homoserine + methanethiol → L-methionine + acetate.
O(3)-acetyl-L-serine + H(2)S → L-cysteine + acetate.
General function:
Involved in pyridoxal phosphate binding
Specific function:
L-cystathionine + H(2)O = L-cysteine + NH(3) + 2-oxobutanoate
Gene Name:
CYS3
Uniprot ID:
P31373
Molecular weight:
42541.69922
Reactions
L-cystathionine + H(2)O → L-cysteine + NH(3) + 2-oxobutanoate.
General function:
Coenzyme transport and metabolism
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
P40506
Molecular weight:
41892.69922
Reactions
CTP + (R)-4'-phosphopantothenate + L-cysteine → CMP + PPi + N-((R)-4'-phosphopantothenoyl)-L-cysteine.
General function:
Involved in glutamate-cysteine ligase activity
Specific function:
ATP + L-glutamate + L-cysteine = ADP + phosphate + gamma-L-glutamyl-L-cysteine
Gene Name:
GSH1
Uniprot ID:
P32477
Molecular weight:
78252.89844
Reactions
ATP + L-glutamate + L-cysteine → ADP + phosphate + gamma-L-glutamyl-L-cysteine.
General function:
Involved in pyridoxal phosphate binding
Specific function:
O(4)-succinyl-L-homoserine + L-cysteine = L- cystathionine + succinate
Gene Name:
STR2
Uniprot ID:
P47164
Molecular weight:
72349.89844
Reactions
O(4)-succinyl-L-homoserine + L-cysteine → L-cystathionine + succinate.
General function:
Involved in acetylglutamate kinase activity
Specific function:
N-acetyl-L-glutamate 5-semialdehyde + NADP(+) + phosphate = N-acetyl-5-glutamyl phosphate + NADPH
Gene Name:
ARG5
Uniprot ID:
Q01217
Molecular weight:
94868.39844
Reactions
N-acetyl-L-glutamate 5-semialdehyde + NADP(+) + phosphate → N-acetyl-5-glutamyl phosphate + NADPH.
ATP + N-acetyl-L-glutamate → ADP + N-acetyl-L-glutamate 5-phosphate.
General function:
Involved in hydrolase activity
Specific function:
Catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside tri- and di-phosphates. Has equal high activity toward ADP/ATP, GDP/GTP, and UDP/UTP and approximately 50% less toward CDP/CTP and thiamine pyrophosphate. Has no activity toward GMP. Required for Golgi glycosylation and cell wall integrity. Together with CDC55, required for adenovirus E4orf4 (early region 4 open reading frame 4) induced toxicity, the apyrase activity is not required for this function. Plays a role in sphingolipid synthesis
Gene Name:
YND1
Uniprot ID:
P40009
Molecular weight:
71851.20313
Reactions
ATP + 2 H(2)O → AMP + 2 phosphate.
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Involved in protein N-glycosylation. Essential for the second step of the dolichol-linked oligosaccharide pathway
Gene Name:
ALG13
Uniprot ID:
P53178
Molecular weight:
22660.90039
Reactions
UDP-N-acetyl-D-glucosamine + N-acetyl-D-glucosaminyl-diphosphodolichol → UDP + N,N'-diacetylchitobiosyl-diphosphodolichol.
General function:
Involved in ATP binding
Specific function:
Catalyzes the conversion of uridine into UMP and cytidine into CMP in the pyrimidine salvage pathway
Gene Name:
URK1
Uniprot ID:
P27515
Molecular weight:
56295.5
Reactions
ATP + uridine → ADP + UMP.
ATP + cytidine → ADP + CMP.
General function:
Involved in zinc ion binding
Specific function:
This enzyme scavenge exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis
Gene Name:
CDD1
Uniprot ID:
Q06549
Molecular weight:
15535.90039
Reactions
Cytidine + H(2)O → uridine + NH(3).
General function:
Involved in argininosuccinate synthase activity
Specific function:
In yeast, as can have a catabolic function since it allows efficient utilization of citrulline via arginine and the reactions involved in the arginase pathway
Gene Name:
ARG1
Uniprot ID:
P22768
Molecular weight:
46939.30078
Reactions
ATP + L-citrulline + L-aspartate → AMP + diphosphate + N(omega)-(L-arginino)succinate.
General function:
Involved in catalytic activity
Specific function:
Hydrolyzes the N-acetamido groups of N-acetyl-D- glucosamine residues in chitin
Gene Name:
CDA1
Uniprot ID:
Q06702
Molecular weight:
34642.0
Reactions
Chitin + H(2)O → chitosan + acetate.
General function:
Involved in catalytic activity
Specific function:
Hydrolyzes the N-acetamido groups of N-acetyl-D- glucosamine residues in chitin
Gene Name:
CDA2
Uniprot ID:
Q06703
Molecular weight:
35692.80078
Reactions
Chitin + H(2)O → chitosan + acetate.
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N- acetylation of N-acetylglucosaminyl-phosphatidylinositol
Gene Name:
GPI12
Uniprot ID:
P23797
Molecular weight:
35445.60156
Reactions
6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H(2)O → 6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + acetate.
General function:
Involved in oxidoreductase activity
Specific function:
Maintains high levels of reduced glutathione in the cytosol
Gene Name:
GLR1
Uniprot ID:
P41921
Molecular weight:
53440.60156
Reactions
2 glutathione + NADP(+) → glutathione disulfide + NADPH.
General function:
Involved in deaminase activity
Specific function:
Adenosine + H(2)O = inosine + NH(3)
Gene Name:
AAH1
Uniprot ID:
P53909
Molecular weight:
39634.69922
Reactions
Adenosine + H(2)O → inosine + NH(3).
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
3-phospho-D-glycerate + NAD(+) = 3- phosphonooxypyruvate + NADH
Gene Name:
SER33
Uniprot ID:
P40510
Molecular weight:
51187.80078
Reactions
3-phospho-D-glycerate + NAD(+) → 3-phosphonooxypyruvate + NADH.
2-hydroxyglutarate + NAD(+) → 2-oxoglutarate + NADH.
General function:
Involved in carboxyl- or carbamoyltransferase activity
Specific function:
Carbamoyl phosphate + L-ornithine = phosphate + L-citrulline
Gene Name:
ARG3
Uniprot ID:
P05150
Molecular weight:
37844.80078
Reactions
Carbamoyl phosphate + L-ornithine → phosphate + L-citrulline.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Involved in pre-tRNA splicing. CTP- dependent diacylglycerol kinase that catalyzes the phosphorylation of diacylglycerol (DAG) to phosphatidate (PA). Controls phosphatidate levels at the nuclear envelope. Counteracts the activity of PAH1/SMP2. Involved in the resistance to nickel chloride and nalidixic acid. May be involved in vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus
Gene Name:
DGK1
Uniprot ID:
Q12382
Molecular weight:
32839.80078
Reactions
CTP + 1,2-diacyl-sn-glycerol → CDP + 1,2-diacyl-sn-glycerol 3-phosphate.
General function:
Involved in ATP binding
Specific function:
RAR (regulation of autonomous replication) is a protein whose activity increases the mitotic stability of plasmids
Gene Name:
ERG12
Uniprot ID:
P07277
Molecular weight:
48458.89844
Reactions
ATP + (R)-mevalonate → ADP + (R)-5-phosphomevalonate.
General function:
Involved in phosphoribosylaminoimidazole carboxylase activity
Specific function:
5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxylate = 5-amino-1-(5-phospho-D-ribosyl)imidazole + CO(2)
Gene Name:
ADE2
Uniprot ID:
P21264
Molecular weight:
62338.69922
Reactions
5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate → 5-amino-1-(5-phospho-D-ribosyl)imidazole + CO(2).
General function:
Involved in catalytic activity
Specific function:
L-serine = pyruvate + NH(3)
Gene Name:
CHA1
Uniprot ID:
P25379
Molecular weight:
39301.0
Reactions
L-serine → pyruvate + NH(3).
L-threonine → 2-oxobutanoate + NH(3).
General function:
Involved in ATP binding
Specific function:
Main glucose phosphorylating enzyme. May play a regulatory role in both induction and repression of gene expression by glucose
Gene Name:
HXK2
Uniprot ID:
P04807
Molecular weight:
53942.0
Reactions
ATP + D-hexose → ADP + D-hexose 6-phosphate.
ATP + D-fructose → ADP + D-fructose 1-phosphate
General function:
Involved in ATP binding
Specific function:
ATP + D-hexose = ADP + D-hexose 6-phosphate
Gene Name:
HXK1
Uniprot ID:
P04806
Molecular weight:
53737.89844
Reactions
ATP + D-hexose → ADP + D-hexose 6-phosphate.
ATP + D-fructose → ADP + D-fructose 1-phosphate
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the production and accumulation of glycerol during hyperosmotic stress conditions. Glycerol acts as a osmoregulator that prevents loss of water and turgor of the cells
Gene Name:
GPD1
Uniprot ID:
Q00055
Molecular weight:
42868.5
Reactions
sn-glycerol 3-phosphate + NAD(+) → glycerone phosphate + NADH.
General function:
Involved in protein binding
Specific function:
Glycerophosphocholine glycerophosphodiesterase responsible for the hydrolysis of intracellular glycerophosphocholine into glycerol-phosphate and choline. The choline is used for phosphatidyl-choline synthesis. Required for utilization of glycerophosphocholine as phosphate source
Gene Name:
GDE1
Uniprot ID:
Q02979
Molecular weight:
138013.0
Reactions
A glycerophosphodiester + H(2)O → an alcohol + sn-glycerol 3-phosphate.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the production of glycerol under anaerobic growth conditions. Glycerol production serves as a redox sink by consuming the excess cytosolic NADH during anaerobic metabolism
Gene Name:
GPD2
Uniprot ID:
P41911
Molecular weight:
49421.30078
Reactions
sn-glycerol 3-phosphate + NAD(+) → glycerone phosphate + NADH.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + glycerol = ADP + sn-glycerol 3- phosphate
Gene Name:
GUT1
Uniprot ID:
P32190
Molecular weight:
79823.60156
Reactions
ATP + glycerol → ADP + sn-glycerol 3-phosphate.
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Essential for the viability of mitochondrial petite mutant. Catalyzes the committed step to the synthesis of the acidic phospholipids
Gene Name:
PGS1
Uniprot ID:
P25578
Molecular weight:
59369.69922
Reactions
CDP-diacylglycerol + sn-glycerol 3-phosphate → CMP + 3(3-sn-phosphatidyl)-sn-glycerol 1-phosphate.
General function:
Involved in thiosulfate sulfurtransferase activity
Specific function:
Thiosulfate + cyanide = sulfite + thiocyanate
Gene Name:
Not Available
Uniprot ID:
Q08686
Molecular weight:
34218.60156
Reactions
Thiosulfate + cyanide → sulfite + thiocyanate.
General function:
Involved in catalytic activity
Specific function:
Dethiobiotin + sulfur + 2 S-adenosyl-L- methionine = biotin + 2 L-methionine + 2 5'-deoxyadenosine
Gene Name:
BIO2
Uniprot ID:
P32451
Molecular weight:
41883.80078
Reactions
Dethiobiotin + sulfur + 2 S-adenosyl-L-methionine → biotin + 2 L-methionine + 2 5'-deoxyadenosine.
General function:
Involved in magnesium ion binding
Specific function:
ATP + 7,8-diaminononanoate + CO(2) = ADP + phosphate + dethiobiotin
Gene Name:
BIO4
Uniprot ID:
P53630
Molecular weight:
26256.69922
Reactions
ATP + 7,8-diaminononanoate + CO(2) → ADP + phosphate + dethiobiotin.
General function:
Involved in ATP binding
Specific function:
ATP + 5-amino-1-(5-phospho-D- ribosyl)imidazole-4-carboxylate + L-aspartate = ADP + phosphate + (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate
Gene Name:
ADE1
Uniprot ID:
P27616
Molecular weight:
34603.10156
Reactions
ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-aspartate → ADP + phosphate + (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate.
General function:
Involved in 6-phosphofructokinase activity
Specific function:
ATP + D-fructose 6-phosphate = ADP + D- fructose 1,6-bisphosphate
Gene Name:
PFK1
Uniprot ID:
P16861
Molecular weight:
107969.0
Reactions
ATP + D-fructose 6-phosphate → ADP + D-fructose 1,6-bisphosphate.
General function:
Involved in catalytic activity
Specific function:
Involved in the catabolism of quinolinic acid (QA)
Gene Name:
BNA6
Uniprot ID:
P43619
Molecular weight:
32364.69922
Reactions
Nicotinate D-ribonucleotide + diphosphate + CO(2) → pyridine-2,3-dicarboxylate + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in dihydrofolate reductase activity
Specific function:
Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis
Gene Name:
DFR1
Uniprot ID:
P07807
Molecular weight:
24260.80078
Reactions
5,6,7,8-tetrahydrofolate + NADP(+) → 7,8-dihydrofolate + NADPH.
General function:
Involved in tetrahydrofolylpolyglutamate synthase activity
Specific function:
Conversion of folates to polyglutamate derivatives
Gene Name:
FOL3
Uniprot ID:
Q12676
Molecular weight:
47850.80078
Reactions
ATP + tetrahydropteroyl-(gamma-Glu)(n) + L-glutamate → ADP + phosphate + tetrahydropteroyl-(gamma-Glu)(n+1).
General function:
Involved in formate-tetrahydrofolate ligase activity
Specific function:
5,10-methylenetetrahydrofolate + NADP(+) = 5,10-methenyltetrahydrofolate + NADPH
Gene Name:
MIS1
Uniprot ID:
P09440
Molecular weight:
106216.0
Reactions
5,10-methylenetetrahydrofolate + NADP(+) → 5,10-methenyltetrahydrofolate + NADPH.
5,10-methenyltetrahydrofolate + H(2)O → 10-formyltetrahydrofolate.
ATP + formate + tetrahydrofolate → ADP + phosphate + 10-formyltetrahydrofolate.
General function:
Involved in methionyl-tRNA formyltransferase activity
Specific function:
Formylates methionyl-tRNA in mitochondria
Gene Name:
FMT1
Uniprot ID:
P32785
Molecular weight:
44616.19922
Reactions
10-formyltetrahydrofolate + L-methionyl-tRNA(fMet) + H(2)O → tetrahydrofolate + N-formylmethionyl-tRNA(fMet).
General function:
Involved in formate-tetrahydrofolate ligase activity
Specific function:
5,10-methylenetetrahydrofolate + NADP(+) = 5,10-methenyltetrahydrofolate + NADPH
Gene Name:
ADE3
Uniprot ID:
P07245
Molecular weight:
102204.0
Reactions
5,10-methylenetetrahydrofolate + NADP(+) → 5,10-methenyltetrahydrofolate + NADPH.
5,10-methenyltetrahydrofolate + H(2)O → 10-formyltetrahydrofolate.
ATP + formate + tetrahydrofolate → ADP + phosphate + 10-formyltetrahydrofolate.
General function:
Involved in 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity
Specific function:
Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation
Gene Name:
MET6
Uniprot ID:
P05694
Molecular weight:
85859.20313
Reactions
5-methyltetrahydropteroyltri-L-glutamate + L-homocysteine → tetrahydropteroyltri-L-glutamate + L-methionine.
General function:
Involved in porphobilinogen synthase activity
Specific function:
Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen
Gene Name:
HEM2
Uniprot ID:
P05373
Molecular weight:
37739.69922
Reactions
2 5-aminolevulinate → porphobilinogen + 2 H(2)O.
General function:
Involved in coproporphyrinogen oxidase activity
Specific function:
Key enzyme in heme biosynthesis. Catalyzes the oxidative decarboxylation of propionic acid side chains of rings A and B of coproporphyrinogen III
Gene Name:
HEM13
Uniprot ID:
P11353
Molecular weight:
37711.30078
Reactions
Coproporphyrinogen-III + O(2) + 2 H(+) → protoporphyrinogen-IX + 2 CO(2) + 2 H(2)O.
General function:
Involved in uroporphyrinogen decarboxylase activity
Specific function:
Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III
Gene Name:
HEM12
Uniprot ID:
P32347
Molecular weight:
41348.69922
Reactions
Uroporphyrinogen III → coproporphyrinogen + 4 CO(2).
General function:
Involved in riboflavin kinase activity
Specific function:
Catalyzes the phosphorylation of riboflavin (vitamin B2) to form flavin mononucleotide (FMN) coenzyme
Gene Name:
FMN1
Uniprot ID:
Q03778
Molecular weight:
24536.90039
Reactions
ATP + riboflavin → ADP + FMN.
General function:
Involved in FMN reductase activity
Specific function:
Has several reductase activities that are NAD(P)H- dependent and involve FMN as a cofactor, ferricyanide being the best substrate for reduction. May be involved in ferric iron assimilation
Gene Name:
LOT6
Uniprot ID:
Q07923
Molecular weight:
21280.40039
Reactions
FMNH(2) + NAD(P)(+) → FMN + NAD(P)H.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the adenylation of flavin mononucleotide (FMN) to form flavin adenine dinucleotide (FAD) coenzyme
Gene Name:
FAD1
Uniprot ID:
P38913
Molecular weight:
35545.80078
Reactions
ATP + FMN → diphosphate + FAD.
General function:
Involved in zinc ion binding
Specific function:
L-iditol + NAD(+) = L-sorbose + NADH
Gene Name:
SOR1
Uniprot ID:
P35497
Molecular weight:
38165.39844
Reactions
L-iditol + NAD(+) → L-sorbose + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
External NADH dehydrogenase required for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. With NDE1, performes the mitochondrial oxidation of cytosolic NADH under these growth conditions. Regulates the mitochondrial glycerol-3-phosphate dehydrogenase, GUT2, also involved in cytosolic NADH oxydation
Gene Name:
NDE2
Uniprot ID:
Q07500
Molecular weight:
61658.69922
Reactions
NADH + ubiquinone → NAD(+) + ubiquinol.
General function:
Involved in oxidoreductase activity
Specific function:
External NADH dehydrogenase required for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. With NDE2, performes the mitochondrial oxidation of cytosolic NADH under these growth conditions. Regulates the mitochondrial glycerol-3-phosphate dehydrogenase, GUT2, also involved in cytosolic NADH oxydation
Gene Name:
NDE1
Uniprot ID:
P40215
Molecular weight:
62773.60156
Reactions
NADH + ubiquinone → NAD(+) + ubiquinol.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidation of NADH generated inside the Mitochondrion
Gene Name:
NDI1
Uniprot ID:
P32340
Molecular weight:
57249.30078
Reactions
NADH + ubiquinone → NAD(+) + ubiquinol.
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. The multiple transmembrane domains and lumenal hydrophilic domains of the cholinephosphotransferase might participate in the transport process
Gene Name:
CPT1
Uniprot ID:
P17898
Molecular weight:
44829.0
Reactions
CDP-choline + 1,2-diacylglycerol → CMP + a phosphatidylcholine.
General function:
Involved in catalytic activity
Specific function:
CTP + choline phosphate = diphosphate + CDP- choline
Gene Name:
PCT1
Uniprot ID:
P13259
Molecular weight:
49405.80078
Reactions
CTP + choline phosphate → diphosphate + CDP-choline.
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl ethanolamine to the lumenal surface. The multiple transmembrane domains and lumenal hydrophilic domains of the ethanolaminephosphotransferase might participate in the transport process. EPT1 catalyzes both choline- and ethanolamine-phosphotransferase reactions
Gene Name:
EPT1
Uniprot ID:
P22140
Molecular weight:
44559.30078
Reactions
CDP-ethanolamine + 1,2-diacylglycerol → CMP + a phosphatidylethanolamine.
CDP-choline + 1,2-diacylglycerol → CMP + a phosphatidylcholine.
General function:
Involved in zinc ion binding
Specific function:
Converts cytosine to uracil or 5-methylcytosine to thymine by deaminating carbon number 4
Gene Name:
FCY1
Uniprot ID:
Q12178
Molecular weight:
17506.90039
Reactions
Cytosine + H(2)O → uracil + NH(3).
General function:
Involved in oxidoreductase activity
Specific function:
L-glutamate + H(2)O + NAD(+) = 2-oxoglutarate + NH(3) + NADH
Gene Name:
GDH2
Uniprot ID:
P33327
Molecular weight:
124331.0
Reactions
L-glutamate + H(2)O + NAD(+) → 2-oxoglutarate + NH(3) + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
L-glutamate + H(2)O + NADP(+) = 2-oxoglutarate + NH(3) + NADPH
Gene Name:
GDH3
Uniprot ID:
P39708
Molecular weight:
49626.80078
Reactions
L-glutamate + H(2)O + NADP(+) → 2-oxoglutarate + NH(3) + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
L-glutamate + H(2)O + NADP(+) = 2-oxoglutarate + NH(3) + NADPH
Gene Name:
GDH1
Uniprot ID:
P07262
Molecular weight:
49569.60156
Reactions
L-glutamate + H(2)O + NADP(+) → 2-oxoglutarate + NH(3) + NADPH.
General function:
Involved in catalytic activity
Specific function:
Exhibits dehydratase activity specific for L-threo-3- hydroxyaspartate
Gene Name:
SRY1
Uniprot ID:
P36007
Molecular weight:
34898.69922
Reactions
Threo-3-hydroxy-L-aspartate → oxaloacetate + NH(3).
General function:
Involved in deaminase activity
Specific function:
AMP deaminase plays a critical role in energy metabolism
Gene Name:
AMD1
Uniprot ID:
P15274
Molecular weight:
93300.79688
Reactions
AMP + H(2)O → IMP + NH(3).
General function:
Involved in zinc ion binding
Specific function:
Involved in riboflavin biosynthesis. Converts 2,5- diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5'-phosphate into 5- amino-6-(ribosylamino)-2,4(1H,3H)-pyrimidinedione 5'-phosphate
Gene Name:
RIB2
Uniprot ID:
Q12362
Molecular weight:
67035.29688
Reactions
tRNA uridine → tRNA pseudouridine.
2,5-diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine + H(2)O → 5-amino-6-(5-phosphoribosylamino)uracil + NH(3).
General function:
Involved in zinc ion binding
Specific function:
Supplies the nucleotide substrate for thymidylate synthetase
Gene Name:
DCD1
Uniprot ID:
P06773
Molecular weight:
35645.69922
Reactions
dCMP + H(2)O → dUMP + NH(3).
General function:
Involved in hydrolase activity
Specific function:
Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia
Gene Name:
GUD1
Uniprot ID:
Q07729
Molecular weight:
55203.19922
Reactions
Guanine + H(2)O → xanthine + NH(3).
General function:
Involved in magnesium ion binding
Specific function:
5-phosphoribose 1-diphosphate synthase involved in nucleotide, histidine, and tryptophan biosynthesis. Active in heteromultimeric complexes with other 5-phosphoribose 1- diphosphate synthases (PRS2, PRS3, PRS4 and PRS5)
Gene Name:
PRS5
Uniprot ID:
Q12265
Molecular weight:
53504.19922
Reactions
ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in hydrolase activity
Specific function:
NAD(+) + H(2)O = AMP + NMN
Gene Name:
NPY1
Uniprot ID:
P53164
Molecular weight:
43516.0
Reactions
NAD(+) + H(2)O → AMP + NMN.
General function:
Involved in magnesium ion binding
Specific function:
5-phosphoribose 1-diphosphate synthase involved in nucleotide, histidine, and tryptophan biosynthesis. Active in heteromultimeric complexes with other 5-phosphoribose 1- diphosphate synthases (PRS2, PRS3, PRS4 and PRS5)
Gene Name:
PRS2
Uniprot ID:
P38620
Molecular weight:
34764.60156
Reactions
ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in 3',5'-cyclic-AMP phosphodiesterase activity
Specific function:
Controls the level of cAMP in yeast cells, together with the high-affinity cAMP phosphodiesterase (PDE2)
Gene Name:
PDE1
Uniprot ID:
P22434
Molecular weight:
42015.69922
Reactions
Nucleoside 3',5'-cyclic phosphate + H(2)O → nucleoside 5'-phosphate.
General function:
Involved in catalytic activity
Specific function:
Cleaves A-5'-PPP-5'A to yield AMP and ADP. Can cleave all dinucleoside polyphosphates, provided the phosphate chain contains at least 3 phosphates and that 1 of the 2 bases composing the nucleotide is a purine. Is most effective on dinucleoside triphosphates. Negatively regulates intracellular dinucleoside polyphosphate levels, which elevate following heat shock
Gene Name:
HNT2
Uniprot ID:
P49775
Molecular weight:
23541.59961
Reactions
P(1)-P(3)-bis(5'-adenosyl) triphosphate + H(2)O → ADP + AMP.
General function:
Involved in magnesium ion binding
Specific function:
5-phosphoribose 1-diphosphate synthase involved in nucleotide, histidine, and tryptophan biosynthesis. Active in heteromultimeric complexes with other 5-phosphoribose 1- diphosphate synthases (PRS2, PRS3, PRS4 and PRS5)
Gene Name:
PRS1
Uniprot ID:
P32895
Molecular weight:
47047.0
Reactions
ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in thiamine diphosphokinase activity
Specific function:
Essential protein, it is the only enzyme in yeast capable of synthesizing thiamine pyrophosphate (TPP)
Gene Name:
THI80
Uniprot ID:
P35202
Molecular weight:
36615.69922
Reactions
ATP + thiamine → AMP + thiamine diphosphate.
General function:
Involved in biotin-[acetyl-CoA-carboxylase] ligase activity
Specific function:
Post-translational modification of specific protein by attachment of biotin. Acts on various carboxylases such as acetyl- CoA-carboxylase, pyruvate carboxylase, propionyl CoA carboxylase, and 3-methylcrotonyl CoA carboxylase
Gene Name:
BPL1
Uniprot ID:
P48445
Molecular weight:
76362.39844
Reactions
ATP + biotin + apo-[methylmalonyl-CoA:pyruvate carboxytransferase] → AMP + diphosphate + [methylmalonyl-CoA:pyruvate carboxytransferase].
ATP + biotin + apo-[propionyl-CoA:carbon-dioxide ligase (ADP-forming)] → AMP + diphosphate + [propionyl-CoA:carbon-dioxide ligase (ADP-forming)].
ATP + biotin + apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)] → AMP + diphosphate + [3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)].
ATP + biotin + apo-[acetyl-CoA:carbon-dioxide ligase (ADP-forming)] → AMP + diphosphate + [acetyl-CoA:carbon-dioxide ligase (ADP-forming)].
General function:
Involved in magnesium ion binding
Specific function:
5-phosphoribose 1-diphosphate synthase involved in nucleotide, histidine, and tryptophan biosynthesis. Active in heteromultimeric complexes with other 5-phosphoribose 1- diphosphate synthases (PRS2, PRS3, PRS4 and PRS5)
Gene Name:
PRS3
Uniprot ID:
P38689
Molecular weight:
35123.30078
Reactions
ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in nucleotide binding
Specific function:
ATP + L-proline + tRNA(Pro) = AMP + diphosphate + L-prolyl-tRNA(Pro)
Gene Name:
Not Available
Uniprot ID:
P38708
Molecular weight:
77385.70313
Reactions
ATP + L-proline + tRNA(Pro) → AMP + diphosphate + L-prolyl-tRNA(Pro).
General function:
Involved in ligase activity
Specific function:
Catalyzes the activation of alpha-aminoadipate by ATP- dependent adenylation and the reduction of activated alpha- aminoadipate by NADPH
Gene Name:
LYS2
Uniprot ID:
P07702
Molecular weight:
155344.0
Reactions
L-2-aminoadipate 6-semialdehyde + NAD(P)(+) + H(2)O → L-2-aminoadipate + NAD(P)H.
General function:
Involved in catalytic activity
Specific function:
Controls the level of cAMP in yeast cells, together with the low-affinity cAMP phosphodiesterase (PDE1)
Gene Name:
PDE2
Uniprot ID:
P06776
Molecular weight:
60999.19922
Reactions
Adenosine 3',5'-cyclic phosphate + H(2)O → adenosine 5'-phosphate.
General function:
Involved in ATP binding
Specific function:
Catalyzes the phosphorylation of nicotinamide riboside (NR) and nicotinic acid riboside (NaR) to form nicotinamide mononucleotide (NMN) and nicotinic acid mononucleotide (NaMN)
Gene Name:
NRK1
Uniprot ID:
P53915
Molecular weight:
27689.30078
Reactions
ATP + N-ribosylnicotinamide → ADP + nicotinamide ribonucleotide.
ATP + D-ribosylnicotinate → ADP + nicotinate D-ribonucleotide.
General function:
Involved in ATP binding
Specific function:
Catalyzes the ATP-dependent phosphorylation of L- homoserine to L-homoserine phosphate
Gene Name:
THR1
Uniprot ID:
P17423
Molecular weight:
38712.0
Reactions
ATP + L-homoserine → ADP + O-phospho-L-homoserine.
General function:
Involved in ATP binding
Specific function:
Has kinase activity and phosphorylates inositol- 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) to produce 1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytate
Gene Name:
IPK1
Uniprot ID:
Q06667
Molecular weight:
32917.69922
Reactions
ATP + 1D-myo-inositol 1,3,4,5,6-pentakisphosphate → ADP + 1D-myo-inositol hexakisphosphate.
General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid
Gene Name:
BNA4
Uniprot ID:
P38169
Molecular weight:
52428.89844
Reactions
L-kynurenine + NADPH + O(2) → 3-hydroxy-L-kynurenine + NADP(+) + H(2)O.
General function:
Involved in metabolic process
Specific function:
Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively
Gene Name:
BNA5
Uniprot ID:
Q05979
Molecular weight:
51031.60156
Reactions
L-kynurenine + H(2)O → anthranilate + L-alanine.
L-3-hydroxykynurenine + H(2)O → 3-hydroxyanthranilate + L-alanine.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + D-ribose = ADP + D-ribose 5-phosphate
Gene Name:
RBK1
Uniprot ID:
P25332
Molecular weight:
36923.80078
Reactions
ATP + D-ribose → ADP + D-ribose 5-phosphate.
General function:
Involved in nucleotidyltransferase activity
Specific function:
ATP + nicotinamide ribonucleotide = diphosphate + NAD(+);ATP + nicotinate ribonucleotide = diphosphate + deamido-NAD+
Gene Name:
NMA2
Uniprot ID:
P53204
Molecular weight:
44908.69922
Reactions
ATP + nicotinamide ribonucleotide → diphosphate + NAD(+).
ATP + nicotinate ribonucleotide → diphosphate + deamido-NAD+
General function:
Involved in diacylglycerol kinase activity
Specific function:
Catalyzes the phosphorylation of the sphingoid long chain bases dihydrosphingosine (DHS or sphinganine) and phytosphingosine (PHS) to form dihydrosphingosine 1-phosphate (DHS-1P) and phytosphingosine 1-phosphate (PHS-1P) respectively. Involved in the biosynthesis of sphingolipids and ceramides. Required with LCB3 for an effective incorporation of DHS into ceramides through a phosphorylation-dephosphorylation cycle. Involved in heat-induced transient cell cycle arrest. Accumulation of phosphorylated sphingoid long chain bases (LCBPs) stimulates calcium influx and activates calcineurin signaling. Involved in heat-stress resistance
Gene Name:
LCB4
Uniprot ID:
Q12246
Molecular weight:
69638.60156
Reactions
ATP + sphinganine → ADP + sphinganine 1-phosphate.
ATP + phytosphingosine → ADP + phytosphingosine 1-phosphate.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Catalyzes the rate-limiting reaction in the mitochondrial fatty acid synthesis (FAS) type II pathway. Responsible for the production of the mitochondrial malonyl-CoA, used for the biosynthesis of the cofactor lipoic acid. This protein carries three functions:biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase
Gene Name:
HFA1
Uniprot ID:
P32874
Molecular weight:
259161.0
Reactions
ATP + acetyl-CoA + HCO(3)(-) → ADP + phosphate + malonyl-CoA.
ATP + biotin-[carboxyl-carrier-protein] + CO(2) → ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
General function:
Involved in diacylglycerol kinase activity
Specific function:
Catalyzes the phosphorylation of the sphingoid long chain bases dihydrosphingosine (DHS or sphinganine) and phytosphingosine (PHS) to form dihydrosphingosine 1-phosphate (DHS-1P) and phytosphingosine 1-phosphate (PHS-1P) respectively. Redundant to LCB4, is only responsible for few percent of the total activity. Involved in the biosynthesis of sphingolipids and ceramides. Involved in heat-induced transient cell cycle arrest. Accumulation of phosphorylated sphingoid long chain bases (LCBPs) stimulates calcium influx and activates calcineurin signaling. Involved in heat-stress resistance
Gene Name:
LCB5
Uniprot ID:
Q06147
Molecular weight:
77564.60156
Reactions
ATP + sphinganine → ADP + sphinganine 1-phosphate.
ATP + phytosphingosine → ADP + phytosphingosine 1-phosphate.
General function:
Involved in nucleotidyltransferase activity
Specific function:
ATP + nicotinamide ribonucleotide = diphosphate + NAD(+)
Gene Name:
NMA1
Uniprot ID:
Q06178
Molecular weight:
45858.60156
Reactions
ATP + nicotinamide ribonucleotide → diphosphate + NAD(+).
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
May play a role in endocytic and/or exocytic pathways
Gene Name:
LSB6
Uniprot ID:
P42951
Molecular weight:
70216.39844
Reactions
ATP + 1-phosphatidyl-1D-myo-inositol → ADP + 1-phosphatidyl-1D-myo-inositol 4-phosphate.
General function:
Involved in ATP binding
Specific function:
Catalyzes the synthesis of activated sulfate
Gene Name:
MET14
Uniprot ID:
Q02196
Molecular weight:
23060.09961
Reactions
ATP + adenylyl sulfate → ADP + 3'-phosphoadenylyl sulfate.
General function:
Involved in NAD+ kinase activity
Specific function:
Specifically phosphorylates NAD in the presence of ATP, dATP, or CTP as phosphoryl donors
Gene Name:
UTR1
Uniprot ID:
P21373
Molecular weight:
59468.69922
Reactions
ATP + NAD(+) → ADP + NADP(+).
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second
Gene Name:
PYC1
Uniprot ID:
P11154
Molecular weight:
130098.0
Reactions
ATP + pyruvate + HCO(3)(-) → ADP + phosphate + oxaloacetate.
General function:
Involved in ATP binding
Specific function:
PI-SceI is an endonuclease that can cleave at a site present in a VMA1 allele that lacks the derived endonuclease segment of the open reading frame; cleavage at this site only occurs during meiosis and initiates "homing", a genetic event that converts a VMA1 allele lacking VDE into one that contains it
Gene Name:
TFP1
Uniprot ID:
P17255
Molecular weight:
118636.0
Reactions
ATP + H(2)O + H(+)(In) → ADP + phosphate + H(+)(Out).
General function:
Involved in phosphomethylpyrimidine kinase activity
Specific function:
Catalyzes the phosphorylation of hydroxymethylpyrimidine phosphate (HMP-P) to HMP-PP, and also probaby that of HMP to HMP- P
Gene Name:
THI21
Uniprot ID:
Q08975
Molecular weight:
61333.69922
Reactions
ATP + 4-amino-5-hydroxymethyl-2-methylpyrimidine → ADP + 4-amino-5-phosphonooxymethyl-2-methylpyrimidine.
ATP + 4-amino-2-methyl-5-phosphomethylpyrimidine → ADP + 4-amino-2-methyl-5-diphosphomethylpyrimidine.
General function:
Involved in phosphomethylpyrimidine kinase activity
Specific function:
Catalyzes the phosphorylation of hydroxymethylpyrimidine phosphate (HMP-P) to HMP-PP, and also probaby that of HMP to HMP- P
Gene Name:
THI20
Uniprot ID:
Q08224
Molecular weight:
61268.89844
Reactions
ATP + 4-amino-5-hydroxymethyl-2-methylpyrimidine → ADP + 4-amino-5-phosphonooxymethyl-2-methylpyrimidine.
ATP + 4-amino-2-methyl-5-phosphomethylpyrimidine → ADP + 4-amino-2-methyl-5-diphosphomethylpyrimidine.
thiamine + H2O → 4-amino-5-hydroxymethyl-2-methylpyrimidine + 5-(2-hydroxyethyl)-4-methylthiazole.
General function:
Involved in nucleotidyltransferase activity
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
P53332
Molecular weight:
34306.30078
Reactions
ATP + pantetheine 4'-phosphate → diphosphate + 3'-dephospho-CoA.
General function:
Involved in pantothenate kinase activity
Specific function:
Plays a role in the physiological regulation of the intracellular CoA concentration
Gene Name:
Not Available
Uniprot ID:
Q04430
Molecular weight:
40902.89844
Reactions
ATP + (R)-pantothenate → ADP + (R)-4'-phosphopantothenate.
General function:
Involved in amino acid binding
Specific function:
ATP + L-aspartate = ADP + 4-phospho-L- aspartate
Gene Name:
HOM3
Uniprot ID:
P10869
Molecular weight:
58109.19922
Reactions
ATP + L-aspartate → ADP + 4-phospho-L-aspartate.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Carries out three functions:biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase
Gene Name:
FAS3
Uniprot ID:
Q00955
Molecular weight:
250351.0
Reactions
ATP + acetyl-CoA + HCO(3)(-) → ADP + phosphate + malonyl-CoA.
ATP + biotin-[carboxyl-carrier-protein] + CO(2) → ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
General function:
Involved in nucleotide binding
Specific function:
The plasma membrane ATPase of plants and fungi is a hydrogen ion pump. The proton gradient it generates drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses
Gene Name:
PMA1
Uniprot ID:
P05030
Molecular weight:
99618.39844
Reactions
ATP + H(2)O + H(+)(In) → ADP + phosphate + H(+)(Out).
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
PYK1
Uniprot ID:
P00549
Molecular weight:
54544.10156
Reactions
ATP + pyruvate → ADP + phosphoenolpyruvate.
General function:
Involved in magnesium ion binding
Specific function:
May be used by cells under conditions in which the level of glycolytic flux is very low
Gene Name:
PYK2
Uniprot ID:
P52489
Molecular weight:
55194.69922
Reactions
ATP + pyruvate → ADP + phosphoenolpyruvate.
General function:
Involved in ATP binding
Specific function:
Putative glucokinase involved in phosphorylation of aldohexoses and glucose uptake. Involved in sporulation. Required for the full activation of the early meiotic inducer IME1
Gene Name:
EMI2
Uniprot ID:
Q04409
Molecular weight:
55920.30078
Reactions
ATP + D-glucose → ADP + D-glucose 6-phosphate.
General function:
Involved in ATP phosphoribosyltransferase activity
Specific function:
Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of the enzymatic activity
Gene Name:
HIS1
Uniprot ID:
P00498
Molecular weight:
32266.09961
Reactions
1-(5-phospho-D-ribosyl)-ATP + diphosphate → ATP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in ATP adenylyltransferase activity
Specific function:
Sustains the catabolism of Np-4-N' nucleotides, rather than their synthesis
Gene Name:
APA2
Uniprot ID:
P22108
Molecular weight:
36840.5
Reactions
ADP + ATP → phosphate + P(1),P(4)-bis(5'-adenosyl) tetraphosphate.
General function:
Involved in catalytic activity
Specific function:
A phosphate monoester + H(2)O = an alcohol + phosphate
Gene Name:
PHO8
Uniprot ID:
P11491
Molecular weight:
63003.60156
Reactions
A phosphate monoester + H(2)O → an alcohol + phosphate.
(2E,6E)-farnesyl diphosphate + H(2)O → (2E,6E)-farnesol + diphosphate.
beta-D-fructose 2,6-bisphosphate + H2O → beta-D-fructofuranose 2-phosphate + phosphate
General function:
Involved in catalytic activity
Specific function:
Catalyzes the irreversible reduction of the cytotoxic compound methylglyoxal (MG) to (R)-lactaldehyde as an alternative to detoxification of MG by glyoxalase I GLO1. MG is synthesized via a bypath of glycolysis from dihydroxyacetone phosphate and is believed to play a role in cell cycle regulation and stress adaptation
Gene Name:
GRE2
Uniprot ID:
Q12068
Molecular weight:
38169.19922
Reactions
Lactaldehyde + NADP(+) → methylglyoxal + NADPH.
3-methylbutanol + NAD(P)+ → 3-methylbutanal + NAD(P)H + H+
General function:
Involved in nucleotide binding
Specific function:
The plasma membrane ATPase of plants and fungi is a hydrogen ion pump. The proton gradient it generates drives the active transport of nutrients by H(+)-symport. The resulting external acidification and/or internal alkinization may mediate growth responses
Gene Name:
PMA2
Uniprot ID:
P19657
Molecular weight:
102171.0
Reactions
ATP + H(2)O + H(+)(In) → ADP + phosphate + H(+)(Out).
General function:
Involved in catalytic activity
Specific function:
Essential for thiamine biosynthesis. The kinase activity is involved in the salvage synthesis of TH-P from the thiazole
Gene Name:
THI6
Uniprot ID:
P41835
Molecular weight:
58058.19922
Reactions
2-methyl-4-amino-5-hydroxymethylpyrimidine diphosphate + 4-methyl-5-(2-phosphono-oxyethyl)thiazole → diphosphate + thiamine phosphate.
ATP + 4-methyl-5-(2-hydroxyethyl)thiazole → ADP + 4-methyl-5-(2-phosphonooxyethyl)thiazole.
General function:
Involved in ATP binding
Specific function:
Two isoenzymes, hexokinase-1 and hexokinase-2, can phosphorylate keto- and aldohexoses in yeast, whereas a third isoenzyme, GLK, is specific for aldohexoses. All glucose phosphorylating enzymes are involved in glucose uptake
Gene Name:
GLK1
Uniprot ID:
P17709
Molecular weight:
55376.89844
Reactions
ATP + D-glucose → ADP + D-glucose 6-phosphate.
General function:
Involved in ATP binding
Specific function:
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits
Gene Name:
ATP2
Uniprot ID:
P00830
Molecular weight:
54793.30078
Reactions
ATP + H(2)O + H(+)(In) → ADP + phosphate + H(+)(Out).
General function:
Involved in ATP binding
Specific function:
The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2). Catalyzes the phosphorylation of phosphatidylinositol-3-phosphate on the fifth hydroxyl of the myo- inositol ring, to form phosphatidylinositol-3,5-bisphosphate. Required for endocytic-vacuolar pathway and nuclear migration. The product of the reaction it catalyzes functions as an important regulator of vacuole homeostasis perhaps by controlling membrane flux to and/or from the vacuole. Hyperosmotic shock-induced increase in the levels of PtdIns(3,5)P2 requires the presence of VAC7, VAC14, and/or FIG4
Gene Name:
FAB1
Uniprot ID:
P34756
Molecular weight:
257447.0
Reactions
ATP + 1-phosphatidyl-1D-myo-inositol 3-phosphate → ADP + 1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate.
General function:
Involved in binding
Specific function:
Acts on phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol-1,4,5,- trisphosphate. PIK1 is part of a nuclear phosphoinositide cycle and could control cytokinesis through the actin cytoskeleton
Gene Name:
PIK1
Uniprot ID:
P39104
Molecular weight:
119922.0
Reactions
ATP + 1-phosphatidyl-1D-myo-inositol → ADP + 1-phosphatidyl-1D-myo-inositol 4-phosphate.
General function:
Involved in phosphotransferase activity, alcohol group as acceptor
Specific function:
ATP + D-xylulose = ADP + D-xylulose 5- phosphate
Gene Name:
XKS1
Uniprot ID:
P42826
Molecular weight:
68320.29688
Reactions
ATP + D-xylulose → ADP + D-xylulose 5-phosphate.
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second
Gene Name:
PYC2
Uniprot ID:
P32327
Molecular weight:
130166.0
Reactions
ATP + pyruvate + HCO(3)(-) → ADP + phosphate + oxaloacetate.
General function:
Involved in NAD+ kinase activity
Specific function:
Phosphorylates both NADH and NAD(+), with a twofold preference for NADH. Anti-oxidant factor and key source of the cellular reductant NADPH
Gene Name:
POS5
Uniprot ID:
Q06892
Molecular weight:
46246.5
Reactions
ATP + NADH → ADP + NADPH.
General function:
Involved in phosphatidylinositol phosphate kinase activity
Specific function:
Catalyzes the phosphorylation of phosphatidylinositol-4- phosphate on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol-4,5-biphosphate. Acts downstream of STT4, but in a pathway that does not involve PKC1. May be involved in the organization of the actin cytoskeleton
Gene Name:
MSS4
Uniprot ID:
P38994
Molecular weight:
89319.60156
Reactions
ATP + 1-phosphatidyl-1D-myo-inositol 4-phosphate → ADP + 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
The isoenzyme MDH2 may function primarily in the glyoxylate cycle
Gene Name:
MDH2
Uniprot ID:
P22133
Molecular weight:
40730.39844
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
(S)-malate + NAD(+) = pyruvate + CO(2) + NADH
Gene Name:
MAE1
Uniprot ID:
P36013
Molecular weight:
74375.29688
Reactions
(S)-malate + NAD(+) → pyruvate + CO(2) + NADH.
General function:
Involved in zinc ion binding
Specific function:
Xylitol + NAD(+) = D-xylulose + NADH
Gene Name:
XYL2
Uniprot ID:
Q07993
Molecular weight:
38600.10156
Reactions
Xylitol + NAD(+) → D-xylulose + NADH.
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor
Specific function:
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH
Gene Name:
TDH1
Uniprot ID:
P00360
Molecular weight:
35749.60156
Reactions
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) → 3-phospho-D-glyceroyl phosphate + NADH.
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor
Specific function:
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH
Gene Name:
TDH2
Uniprot ID:
P00358
Molecular weight:
35846.60156
Reactions
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) → 3-phospho-D-glyceroyl phosphate + NADH.
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor
Specific function:
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH
Gene Name:
TDH3
Uniprot ID:
P00359
Molecular weight:
35746.39844
Reactions
D-glyceraldehyde 3-phosphate + phosphate + NAD(+) → 3-phospho-D-glyceroyl phosphate + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
The outer membrane form may mediate the reduction of outer membrane cytochrome b5, and the soluble inter-membrane space form may transfer electrons from external NADH to cytochrome c, thereby mediating an antimycin-insensitive, energy-coupled oxidation of external NADH by yeast mitochondria. Involved in the reduction of D-erythroascorbyl free radicals
Gene Name:
MCR1
Uniprot ID:
P36060
Molecular weight:
34137.69922
Reactions
NADH + 2 ferricytochrome b5 → NAD(+) + H(+) + 2 ferrocytochrome b5.
General function:
Involved in oxidoreductase activity
Specific function:
1-(5-phosphoribosyl)-AMP + H(2)O = 1-(5- phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4-carboxamide
Gene Name:
HIS4
Uniprot ID:
P00815
Molecular weight:
87720.5
Reactions
1-(5-phosphoribosyl)-AMP + H(2)O → 1-(5-phosphoribosyl)-5-((5-phosphoribosylamino)methylideneamino)imidazole-4-carboxamide.
1-(5-phosphoribosyl)-ATP + H(2)O → 1-(5-phosphoribosyl)-AMP + diphosphate.
L-histidinol + H(2)O + 2 NAD(+) → L-histidine + 2 NADH.
General function:
Involved in zinc ion binding
Specific function:
Catalyzes the irreversible reduction of 2,3-butanediol to (S)-acetoin in the presence of NADH
Gene Name:
BDH1
Uniprot ID:
P39714
Molecular weight:
41537.69922
Reactions
(R)-acetoin + NAD(+) → diacetyl + NADH.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
(S)-malate + NAD(+) = oxaloacetate + NADH
Gene Name:
MDH3
Uniprot ID:
P32419
Molecular weight:
37185.89844
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
Second trifunctional enzyme acting on the beta-oxidation pathway for fatty acids, possessing hydratase-dehydrogenase- epimerase activities. Converts trans-2-enoyl-CoA via D-3- hydroxyacyl-CoA to 3-ketoacyl-CoA
Gene Name:
FOX2
Uniprot ID:
Q02207
Molecular weight:
98702.39844
Reactions
(3R)-3-hydroxyacyl-CoA → (2E)-2-enoyl-CoA + H(2)O.
(R)-3-hydroxyacyl-CoA + NAD(+) → 3-oxoacyl-CoA + NADH.
General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the NAD(+)-dependent conversion of homoisocitrate to alpha-ketoadipate
Gene Name:
LYS12
Uniprot ID:
P40495
Molecular weight:
40068.60156
Reactions
(1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate + NAD(+) → 2-oxoadipate + CO(2) + NADH.
General function:
Involved in binding
Specific function:
Catalyzes the conversion of precorrin-2 into siroheme. This reaction consist of the NAD-dependent oxidation of precorrin- 2 into sirohydrochlorin and its subsequent ferrochelation into siroheme
Gene Name:
MET8
Uniprot ID:
P15807
Molecular weight:
31917.40039
Reactions
Precorrin-2 + NAD(+) → sirohydrochlorin + NADH.
Siroheme + 2 H(+) → sirohydrochlorin + Fe(2+).
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
IMD3
Uniprot ID:
P50095
Molecular weight:
56584.39844
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O → xanthosine 5'-phosphate + NADH.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
IMD2
Uniprot ID:
P38697
Molecular weight:
56529.5
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O → xanthosine 5'-phosphate + NADH.
General function:
Involved in catalytic activity
Specific function:
Inosine 5'-phosphate + NAD(+) + H(2)O = xanthosine 5'-phosphate + NADH
Gene Name:
IMD1
Uniprot ID:
P39567
Molecular weight:
44385.80078
Reactions
Inosine 5'-phosphate + NAD(+) + H(2)O → xanthosine 5'-phosphate + NADH.
General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate
Gene Name:
LEU2
Uniprot ID:
P04173
Molecular weight:
38952.5
Reactions
(2R,3S)-3-isopropylmalate + NAD(+) → 4-methyl-2-oxopentanoate + CO(2) + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
Reduces the cytotoxic compound methylglyoxal (MG) to (R)-lactaldehyde similar to GRE2. MG is synthesized via a bypath of glycolysis from dihydroxyacetone phosphate and is believed to play a role in cell cycle regulation and stress adaptation. In pentose-fermenting yeasts, aldose reductase catalyzes the reduction of xylose into xylitol. The purified enzyme catalyzes this reaction, but the inability of S.cerevisiae to grow on xylose as sole carbon source indicates that the physiological function is more likely methylglyoxal reduction
Gene Name:
GRE3
Uniprot ID:
P38715
Molecular weight:
37118.5
Reactions
Alditol + NAD(P)(+) → aldose + NAD(P)H.
(R)-lactaldehyde + NADP(+) → methylglyoxal + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
Q05016
Molecular weight:
29158.09961
Reactions
L-serine + NADP+ → 2-ammoniomalonate semialdehyde + NADPH + H+
General function:
Involved in CDP-diacylglycerol-serine O-phosphatidyltransferase activity
Specific function:
CDP-diacylglycerol + L-serine = CMP + (3-sn- phosphatidyl)-L-serine
Gene Name:
CHO1
Uniprot ID:
P08456
Molecular weight:
30804.19922
Reactions
CDP-diacylglycerol + L-serine → CMP + (3-sn-phosphatidyl)-L-serine.
General function:
Involved in oxidoreductase activity
Specific function:
Acts as a alpha-ketoglutarate-dependent dioxygenase active on sulfonates. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being isethionate and taurocholate
Gene Name:
JLP1
Uniprot ID:
Q12358
Molecular weight:
46982.30078
Reactions
General function:
Involved in iron ion binding
Specific function:
Catalyzes the reduction of sulfite to sulfide, one of several activities required for the biosynthesis of L-cysteine from sulfate
Gene Name:
ECM17
Uniprot ID:
P47169
Molecular weight:
161218.0
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O → sulfite + 3 NADPH.
General function:
Involved in phosphoadenylyl-sulfate reductase (thioredoxin) activity
Specific function:
The NADP dependent reduction of PAPS into sulfite involves thioredoxin which probably plays the role of a thiol carrier
Gene Name:
MET16
Uniprot ID:
P18408
Molecular weight:
30380.09961
Reactions
Adenosine 3',5'-bisphosphate + sulfite + thioredoxin disulfide → 3'-phosphoadenylyl sulfate + thioredoxin.
General function:
Involved in oxidoreductase activity
Specific function:
This enzyme catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate
Gene Name:
MET10
Uniprot ID:
P39692
Molecular weight:
114827.0
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O → sulfite + 3 NADPH.
General function:
Involved in zinc ion binding
Specific function:
NADP-dependent alcohol dehydrogenase with a broad substrate specificity
Gene Name:
ADH7
Uniprot ID:
P25377
Molecular weight:
39348.19922
Reactions
An alcohol + NADP(+) → an aldehyde + NADPH.
General function:
Involved in enzyme regulator activity
Specific function:
Required for calcium regulation. May regulate calcium accumulation by a non-vacuole organelle. Also regulates the activity of CSH1 and SUR1 during mannosyl phosphorylinositol ceramide synthesis
Gene Name:
CSG2
Uniprot ID:
P35206
Molecular weight:
45441.60156
Reactions
General function:
Involved in magnesium ion binding
Specific function:
One of five 2-oxo acid decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3) involved in amino acid catabolism. The enzyme catalyzes the decarboxylation of amino acids, which, in a first step, have been transaminated to the corresponding 2-oxo acids (alpha-keto-acids). In a third step, the resulting aldehydes are reduced to alcohols, collectively referred to as fusel oils or alcohols. Its preferred substrates are the transaminated amino acids, phenylalanine, tryptophan, (and probably tyrosine), but also isoleucine, whereas leucine is a low efficiency and valine and pyruvate are no substrates. In analogy to the pyruvate decarboxylases the enzyme may in a side-reaction catalyze condensation (or carboligation) reactions leading to the formation of 2-hydroxy ketone, collectively called acyloins
Gene Name:
ARO10
Uniprot ID:
Q06408
Molecular weight:
71383.79688
Reactions
A 2-oxo acid → an aldehyde + CO(2).
Phenylpyruvate → phenylacetaldehyde + CO(2).
3-(indol-3-yl)pyruvate → 2-(indol-3-yl)acetaldehyde + CO(2).
General function:
Involved in zinc ion binding
Specific function:
NADP-dependent alcohol dehydrogenase with a broad substrate specificity
Gene Name:
ADH6
Uniprot ID:
Q04894
Molecular weight:
39617.30078
Reactions
An alcohol + NADP(+) → an aldehyde + NADPH.
General function:
Coenzyme transport and metabolism
Specific function:
Essential for thiamine biosynthesis
Gene Name:
THI22
Uniprot ID:
Q06490
Molecular weight:
63306.39844
Reactions
General function:
Involved in catalytic activity
Specific function:
CTP + ethanolamine phosphate = diphosphate + CDP-ethanolamine
Gene Name:
MUQ1
Uniprot ID:
P33412
Molecular weight:
36862.60156
Reactions
CTP + ethanolamine phosphate → diphosphate + CDP-ethanolamine.
General function:
Involved in catalytic activity
Specific function:
S-adenosylmethioninamine + spermidine = 5'- methylthioadenosine + spermine
Gene Name:
SPE4
Uniprot ID:
Q12455
Molecular weight:
34090.5
Reactions
S-adenosylmethioninamine + spermidine → 5'-methylthioadenosine + spermine.
General function:
Involved in catalytic activity
Specific function:
S-adenosylmethioninamine + putrescine = 5'-S- methyl-5'-thioadenosine + spermidine
Gene Name:
SPE3
Uniprot ID:
Q12074
Molecular weight:
33323.80078
Reactions
S-adenosylmethioninamine + putrescine → 5'-S-methyl-5'-thioadenosine + spermidine.
General function:
Involved in adenosylmethionine decarboxylase activity
Specific function:
S-adenosylmethionine decarboxylase is essential for normal growth, sporulation, maintenance of ds-RNA virus, biosynthesis of spermine and spermidine
Gene Name:
SPE2
Uniprot ID:
P21182
Molecular weight:
46232.0
Reactions
S-adenosyl-L-methionine → (5-deoxy-5-adenosyl)(3-aminopropyl)-methylsulfonium salt + CO(2).
General function:
Involved in catalytic activity
Specific function:
L-ornithine = putrescine + CO(2)
Gene Name:
SPE1
Uniprot ID:
P08432
Molecular weight:
52284.80078
Reactions
L-ornithine → putrescine + CO(2).
General function:
Involved in 6-phosphogluconolactonase activity
Specific function:
Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate
Gene Name:
SOL4
Uniprot ID:
P53315
Molecular weight:
28447.5
Reactions
6-phospho-D-glucono-1,5-lactone + H(2)O → 6-phospho-D-gluconate.
General function:
Involved in 6-phosphogluconolactonase activity
Specific function:
May be involved in regulation of tRNA subcellular distribution
Gene Name:
SOL1
Uniprot ID:
P50278
Molecular weight:
35652.19922
Reactions
General function:
Involved in 6-phosphogluconolactonase activity
Specific function:
May be involved in regulation of tRNA subcellular distribution
Gene Name:
SOL2
Uniprot ID:
P37262
Molecular weight:
34500.89844
Reactions
General function:
Involved in oxidoreductase activity
Specific function:
(S)-1-pyrroline-5-carboxylate + NAD(P)(+) + 2 H(2)O = L-glutamate + NAD(P)H
Gene Name:
PUT2
Uniprot ID:
P07275
Molecular weight:
64434.60156
Reactions
(S)-1-pyrroline-5-carboxylate + NAD(P)(+) + 2 H(2)O → L-glutamate + NAD(P)H.
General function:
Involved in proline dehydrogenase activity
Specific function:
Converts proline to delta-1-pyrroline-5-carboxylate
Gene Name:
PUT1
Uniprot ID:
P09368
Molecular weight:
53270.89844
Reactions
L-proline + acceptor → (S)-1-pyrroline-5-carboxylate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway
Gene Name:
ERG1
Uniprot ID:
P32476
Molecular weight:
55125.39844
Reactions
Squalene + AH(2) + O(2) → (S)-squalene-2,3-epoxide + A + H(2)O.
General function:
Involved in oxidoreductase activity
Specific function:
L-proline + NAD(P)(+) = 1-pyrroline-5- carboxylate + NAD(P)H
Gene Name:
PRO3
Uniprot ID:
P32263
Molecular weight:
30131.59961
Reactions
L-proline + NAD(P)(+) → 1-pyrroline-5-carboxylate + NAD(P)H.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH dependent reduction of L-gamma- glutamyl 5-phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate
Gene Name:
PRO2
Uniprot ID:
P54885
Molecular weight:
49740.0
Reactions
L-glutamate 5-semialdehyde + phosphate + NADP(+) → L-glutamyl 5-phosphate + NADPH.
General function:
Involved in ubiquinone biosynthetic process
Specific function:
Component of the coenzyme Q biosynthetic pathway. May play a role in organizing a multi-subunit COQ enzyme complex required for coenzyme Q biosynthesis. Required for steady-state levels of COQ3, COQ4, COQ6, COQ7 and COQ9 polypeptides
Gene Name:
COQ4
Uniprot ID:
O13525
Molecular weight:
38626.80078
General function:
Involved in 3-beta-hydroxy-delta5-steroid dehydrogenase activity
Specific function:
3-beta-hydroxy-4-beta-methyl-5-alpha-cholest- 7-ene-4-alpha-carboxylate + NAD(P)(+) = 4-alpha-methyl-5-alpha- cholest-7-en-3-one + CO(2) + NAD(P)H
Gene Name:
ERG26
Uniprot ID:
P53199
Molecular weight:
38706.10156
Reactions
3-beta-hydroxy-4-beta-methyl-5-alpha-cholest-7-ene-4-alpha-carboxylate + NAD(P)(+) → 4-alpha-methyl-5-alpha-cholest-7-en-3-one + CO(2) + NAD(P)H.
General function:
Involved in GTP cyclohydrolase II activity
Specific function:
Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate
Gene Name:
RIB1
Uniprot ID:
P38066
Molecular weight:
38331.60156
Reactions
GTP + 3 H(2)O → formate + 2,5-diamino-6-hydroxy-4-(5-phospho-D-ribosylamino)pyrimidine + diphosphate.
General function:
Involved in 5-amino-6-(5-phosphoribosylamino)uracil reductase activity
Specific function:
5-amino-6-(5-phosphoribitylamino)uracil + NADP(+) = 5-amino-6-(5-phosphoribosylamino)uracil + NADPH
Gene Name:
RIB7
Uniprot ID:
P33312
Molecular weight:
27116.0
Reactions
5-amino-6-(5-phospho-D-ribitylamino)uracil + NADP(+) → 5-amino-6-(5-phospho-D-ribosylamino)uracil + NADPH.
General function:
Involved in oxoglutarate dehydrogenase (succinyl-transferring) activity
Specific function:
The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components:2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3)
Gene Name:
KGD1
Uniprot ID:
P20967
Molecular weight:
114416.0
Reactions
2-oxoglutarate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine → [dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine + CO(2).
General function:
Involved in hydrolase activity
Specific function:
Thiolesterase that catalyzes the hydrolysis of S-D- lactoyl-glutathione to form glutathione and D-lactic acid
Gene Name:
GLO2
Uniprot ID:
Q05584
Molecular weight:
31326.30078
Reactions
S-(2-hydroxyacyl)glutathione + H(2)O → glutathione + a 2-hydroxy carboxylate.
General function:
Involved in electron carrier activity
Specific function:
Multifunctional enzyme with glutathione-dependent oxidoreductase, glutathione peroxidase and glutathione S- transferase (GST) activity. The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing cytosolic protein- and non-protein-disulfides in a coupled system with glutathione reductase. Required for resistance to reactive oxygen species (ROS) by directly reducing hydroperoxides and for the detoxification of ROS-mediated damage
Gene Name:
GRX2
Uniprot ID:
P17695
Molecular weight:
15861.2998
Reactions
General function:
Involved in carboxylesterase activity
Specific function:
Serine hydrolase involved in the detoxification of formaldehyde
Gene Name:
Not Available
Uniprot ID:
P40363
Molecular weight:
33934.0
Reactions
S-formylglutathione + H(2)O → glutathione + formate.
4-methylumbelliferyl acetate + H2O → 4-methylumbelliferone + acetate
General function:
Involved in electron carrier activity
Specific function:
Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters. Binds one iron-sulfur cluster per dimer. The iron-sulfur cluster is bound between subunits, and is complexed by a bound glutathione and a cysteine residue from each subunit (Probable)
Gene Name:
GRX4
Uniprot ID:
P32642
Molecular weight:
27492.59961
General function:
Involved in hydrolase activity
Specific function:
Thiolesterase that catalyzes the hydrolysis of S-D- lactoyl-glutathione to form glutathione and D-lactic acid
Gene Name:
GLO4
Uniprot ID:
Q12320
Molecular weight:
32338.59961
Reactions
S-(2-hydroxyacyl)glutathione + H(2)O → glutathione + a 2-hydroxy carboxylate.
General function:
Involved in electron carrier activity
Specific function:
Multifunctional enzyme with glutathione-dependent oxidoreductase, glutathione peroxidase and glutathione S- transferase (GST) activity. The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing cytosolic protein- and non-protein-disulfides in a coupled system with glutathione reductase. Required for resistance to reactive oxygen species (ROS) by directly reducing hydroperoxides and for the detoxification of ROS-mediated damage
Gene Name:
GRX1
Uniprot ID:
P25373
Molecular weight:
12380.09961
Reactions
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
CDP-diacylglycerol + myo-inositol = CMP + phosphatidyl-1D-myo-inositol
Gene Name:
PIS1
Uniprot ID:
P06197
Molecular weight:
24823.5
Reactions
CDP-diacylglycerol + myo-inositol → CMP + phosphatidyl-1D-myo-inositol.
General function:
Involved in oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor
Specific function:
The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2)
Gene Name:
PDA1
Uniprot ID:
P16387
Molecular weight:
46342.69922
Reactions
Pyruvate + [dihydrolipoyllysine-residue acetyltransferase] lipoyllysine → [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO(2).
General function:
Involved in catalytic activity
Specific function:
(S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H(+)
Gene Name:
CYB2
Uniprot ID:
P00175
Molecular weight:
65538.79688
Reactions
(S)-lactate + 2 ferricytochrome c → pyruvate + 2 ferrocytochrome c + 2 H(+).
General function:
Involved in catalytic activity
Specific function:
Catalyzes the stereospecific oxidation of D-lactate to pyruvate
Gene Name:
DLD1
Uniprot ID:
P32891
Molecular weight:
65291.89844
Reactions
(R)-lactate + 2 ferricytochrome c → pyruvate + 2 ferrocytochrome c.
General function:
Involved in catalytic activity
Specific function:
(R)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c
Gene Name:
DLD3
Uniprot ID:
P39976
Molecular weight:
55224.5
Reactions
(R)-lactate + 2 ferricytochrome c → pyruvate + 2 ferrocytochrome c.
General function:
Involved in magnesium ion binding
Specific function:
2 pyruvate = 2-acetolactate + CO(2)
Gene Name:
ILV2
Uniprot ID:
P07342
Molecular weight:
74936.29688
Reactions
2 pyruvate → 2-acetolactate + CO(2).
General function:
Involved in catalytic activity
Specific function:
In addition to its enzymatic role it could play an important role in the yeast cell morphology
Gene Name:
DLD2
Uniprot ID:
P46681
Molecular weight:
59268.0
Reactions
(R)-lactate + 2 ferricytochrome c → pyruvate + 2 ferrocytochrome c.
General function:
Involved in iron ion binding
Specific function:
Catalyzes the first step in the removal of the two C-4 methyl groups of 4,4-dimethylzymosterol
Gene Name:
ERG25
Uniprot ID:
P53045
Molecular weight:
36478.89844
Reactions
4,4-dimethyl-5-alpha-cholest-7-en-3-beta-ol + NAD(P)H + O(2) → 4-beta-hydroxymethyl-4-alpha-methyl-5-alpha-cholest-7-en-3-beta-ol + NAD(P)(+) + H(2)O.
4-beta-hydroxymethyl-4-alpha-methyl-5-alpha-cholest-7-en-3-beta-ol + NAD(P)H + O(2) → 3-beta-hydroxy-4-beta-methyl-5-alpha-cholest-7-ene-4-alpha-carbaldehyde + NAD(P)(+) + 2 H(2)O.
3-beta-hydroxy-4-beta-methyl-5-alpha-cholest-7-ene-4-alpha-carbaldehyde + NAD(P)H + O(2) → 3-beta-hydroxy-4-beta-methyl-5-alpha-cholest-7-ene-4-alpha-carboxylate + NAD(P)(+) + H(2)O.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS)
Gene Name:
TSC10
Uniprot ID:
P38342
Molecular weight:
35986.19922
Reactions
Sphinganine + NADP(+) → 3-dehydrosphinganine + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Can convert acyl and alkyl dihydroxyacetone-phosphate (DHAP) into glycerolipids and ether lipids, respectively. Required for the biosynthesis of phosphatidic acid via the DHAP pathway, where it reduces 1-acyl DHAP to lysophosphatidic acid (LPA). Required for spore germination
Gene Name:
AYR1
Uniprot ID:
P40471
Molecular weight:
32813.60156
Reactions
1-palmitoylglycerol 3-phosphate + NADP(+) → palmitoylglycerone phosphate + NADPH.
General function:
Involved in biosynthetic process
Specific function:
Participates in the formation of the lipid-linked precursor oligosaccharide for N-glycosylation. Involved in assembling the dolichol-pyrophosphate-GlcNAc(2)-Man(5) intermediate on the cytoplasmic surface of the ER
Gene Name:
ALG1
Uniprot ID:
P16661
Molecular weight:
51928.5
Reactions
GDP-mannose + chitobiosyldiphosphodolichol → GDP + beta-1,4-D-mannosylchitobiosyldiphosphodolichol.
General function:
Involved in nicotinate phosphoribosyltransferase activity
Specific function:
Essential for growth under anaerobic conditions
Gene Name:
NPT1
Uniprot ID:
P39683
Molecular weight:
49018.19922
Reactions
Nicotinate D-ribonucleotide + diphosphate → nicotinate + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in ferroxidase activity
Specific function:
Promotes the biosynthesis of heme as well as the assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. Plays a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+). Can store large amounts of the metal in the form of a ferrihydrite mineral by oligomerization. May be involved in regulation of the mitochondrial electron transport chain
Gene Name:
YFH1
Uniprot ID:
Q07540
Molecular weight:
19490.0
Reactions
4 Fe(2+) + 4 H(+) + O(2) → 4 Fe(3+) + 2 H(2)O.
General function:
Involved in protein methyltransferase activity
Specific function:
Methylates arginines in a variety of RNA-binding proteins. Methylates NOP3. Can catalyze both the mono- and asymmetric dimethylation
Gene Name:
HMT1
Uniprot ID:
P38074
Molecular weight:
39785.80078
Reactions
General function:
Involved in homocysteine S-methyltransferase activity
Specific function:
Homocysteine S-methyltransferase involved in the conversion of S-adenosylmethionine (AdoMet) to methionine to control the methionine/AdoMet ratio. Converts also S- methylmethionine (SMM) to methionine
Gene Name:
MHT1
Uniprot ID:
Q12525
Molecular weight:
36714.5
Reactions
S-methyl-L-methionine + L-homocysteine → 2 L-methionine.
General function:
Involved in homocysteine S-methyltransferase activity
Specific function:
Homocysteine S-methyltransferase involved in the conversion of S-adenosylmethionine (AdoMet) to methionine to control the methionine/AdoMet ratio. Converts also S- methylmethionine (SMM) to methionine
Gene Name:
SAM4
Uniprot ID:
Q08985
Molecular weight:
36668.19922
Reactions
S-methyl-L-methionine + L-homocysteine → 2 L-methionine.
General function:
Involved in phosphatidylethanolamine N-methyltransferas
Specific function:
S-adenosyl-L-methionine + phosphatidylethanolamine = S-adenosyl-L-homocysteine + phosphatidyl-N-methylethanolamine
Gene Name:
PEM1
Uniprot ID:
P05374
Molecular weight:
101203.0
Reactions
S-adenosyl-L-methionine + phosphatidylethanolamine → S-adenosyl-L-homocysteine + phosphatidyl-N-methylethanolamine.
General function:
Involved in N-methyltransferase activity
Specific function:
S-adenosyl-L-methionine + phospholipid olefinic fatty acid = S-adenosyl-L-homocysteine + phospholipid methylene fatty acid
Gene Name:
OPI3
Uniprot ID:
P05375
Molecular weight:
23150.09961
Reactions
S-adenosyl-L-methionine + phospholipid olefinic fatty acid → S-adenosyl-L-homocysteine + phospholipid methylene fatty acid.
General function:
Involved in methyltransferase activity
Specific function:
Catalyzes the methyl transfer from S-adenosyl-methionine to the C-24 of zymosterol to form fecosterol
Gene Name:
ERG6
Uniprot ID:
P25087
Molecular weight:
43430.5
Reactions
S-adenosyl-L-methionine + 5-alpha-cholesta-8,24-dien-3-beta-ol → S-adenosyl-L-homocysteine + 24-methylene-5-alpha-cholest-8-en-3-beta-ol.
General function:
Involved in allantoinase activity
Specific function:
Utilization of purines as secondary nitrogen sources, when primary sources are limiting
Gene Name:
DAL1
Uniprot ID:
P32375
Molecular weight:
50125.89844
Reactions
(S)-allantoin + H(2)O → allantoate.
General function:
Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
Specific function:
Could be a cis-prenyl transferase that adds multiple copies of isopentenyl pyrophosphate (ipp) to farnesyl pyrophosphate (FPP) to produce dehydrodolichyl diphosphate (DeDol- PP)
Gene Name:
SRT1
Uniprot ID:
Q03175
Molecular weight:
40199.69922
Reactions
General function:
Involved in transferase activity, transferring alkyl or aryl (other than methyl) groups
Specific function:
Cis-prenyl transferase that adds multiple copies of isopentenyl pyrophosphate (IPP) to farnesyl pyrophosphate (FPP) to produce dehydrodolichyl diphosphate (Dedol-PP)
Gene Name:
RER2
Uniprot ID:
P35196
Molecular weight:
32693.30078
Reactions
General function:
Involved in hydrolase activity
Specific function:
This enzyme is involved in nucleotide metabolism:it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA
Gene Name:
DUT1
Uniprot ID:
P33317
Molecular weight:
15307.2002
Reactions
dUTP + H(2)O → dUMP + diphosphate.
General function:
Involved in electron carrier activity
Specific function:
Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and redox homeostasis. Thioredoxin-dependent enzymes include phosphoadenosine-phosphosulfate reductase MET16, alkyl- hydroperoxide reductase DOT5, thioredoxin peroxidases TSA1 and TSA2, alkyl hydroperoxide reductase AHP1, and peroxiredoxin HYR1. Thioredoxin is also involved in protection against reducing stress. As part of the LMA1 complex, it is involved in the facilitation of vesicle fusion such as homotypic vacuole and ER- derived COPII vesicle fusion with the Golgi. This activity does not require the redox mechanism. Through its capacity to inactivate the stress response transcription factor YAP1 and its regulator the hydroperoxide stress sensor HYR1, it is involved in feedback regulation of stress response gene expression upon oxidative stress
Gene Name:
TRX2
Uniprot ID:
P22803
Molecular weight:
11203.7998
Reactions
General function:
Involved in electron carrier activity
Specific function:
Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons. It is involved in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding, sulfur metabolism, and redox homeostasis. Thioredoxin-dependent enzymes include phosphoadenosine-phosphosulfate reductase MET16, alkyl- hydroperoxide reductase DOT5, thioredoxin peroxidases TSA1 and TSA2, alkyl hydroperoxide reductase AHP1, and peroxiredoxin HYR1. Thioredoxin is also involved in protection against reducing stress. As part of the LMA1 complex, it is involved in the facilitation of vesicle fusion such as homotypic vacuole and ER- derived COPII vesicle fusion with the Golgi. This activity does not require the redox mechanism
Gene Name:
TRX1
Uniprot ID:
P22217
Molecular weight:
11234.90039
Reactions
General function:
Involved in mannosyltransferase activity
Specific function:
Required for the attachment of the third mannose residue of O-linked saccharides
Gene Name:
KRE2
Uniprot ID:
P27809
Molecular weight:
51386.19922
Reactions
General function:
Involved in mannosyltransferase activity
Specific function:
Mannosyltransferase that transfers a mannose residue from GDP-mannose to a range of acceptors in vitro
Gene Name:
KTR1
Uniprot ID:
P27810
Molecular weight:
46021.69922
Reactions
General function:
Involved in mannosyltransferase activity
Specific function:
Involved in N-linked glycosylation
Gene Name:
KTR2
Uniprot ID:
P33550
Molecular weight:
50650.89844
Reactions
General function:
Involved in mannosyltransferase activity
Specific function:
Possible glycosyltransferase
Gene Name:
KTR3
Uniprot ID:
P38130
Molecular weight:
47482.0
Reactions
General function:
Involved in mannosyltransferase activity
Specific function:
Possible glycosyltransferase involved in N-linked glycosylation
Gene Name:
YUR1
Uniprot ID:
P26725
Molecular weight:
50835.60156
Reactions
General function:
Involved in transferase activity
Specific function:
Involved in cell wall synthesis where it is required for glycosylation. Involved in cell cycle progression through cell- size checkpoint
Gene Name:
MPG1
Uniprot ID:
P41940
Molecular weight:
39565.60156
Reactions
GTP + alpha-D-mannose 1-phosphate → diphosphate + GDP-mannose.
General function:
Involved in 3,4-dihydroxy-2-butanone-4-phosphate synthase activity
Specific function:
Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate
Gene Name:
RIB3
Uniprot ID:
Q99258
Molecular weight:
22567.40039
Reactions
D-ribulose 5-phosphate → formate + L-3,4-dihydroxybutan-2-one 4-phosphate.
General function:
Involved in 1,3-beta-D-glucan synthase activity
Specific function:
Alternate catalytic subunit of the 1,3-beta-glucan synthase (GS). Synthesizes 1,3-beta-glucan, a major structural component of the yeast cell wall. Involved in cell wall synthesis, maintenance and cell wall remodeling
Gene Name:
FKS1
Uniprot ID:
P38631
Molecular weight:
214849.0
Reactions
UDP-glucose + ((1->3)-beta-D-glucosyl)(n) → UDP + ((1->3)-beta-D-glucosyl)(n+1).
General function:
Involved in 1,3-beta-D-glucan synthase activity
Specific function:
Alternate catalytic subunit of the 1,3-beta-glucan synthase (GS). Synthesizes 1,3-beta-glucan, a major structural component of the yeast cell wall. Required for spore wall assembly. Negative regulation of activity by SMK1 is important for spore wall deposition. Activity is positively regulated by RHO1
Gene Name:
GSC2
Uniprot ID:
P40989
Molecular weight:
216988.0
Reactions
UDP-glucose + ((1->3)-beta-D-glucosyl)(n) → UDP + ((1->3)-beta-D-glucosyl)(n+1).
General function:
Involved in nucleotidyltransferase activity
Specific function:
Plays a central role as a glucosyl donor in cellular metabolic pathways
Gene Name:
UGP1
Uniprot ID:
P32861
Molecular weight:
55987.39844
Reactions
UTP + alpha-D-glucose 1-phosphate → diphosphate + UDP-glucose.
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
May be involved in decane metabolism and autophagy. Involved in the biosynthesis of sterol glucoside
Gene Name:
ATG26
Uniprot ID:
Q06321
Molecular weight:
136053.0
Reactions
UDP-glucose + a sterol → UDP + a sterol 3-beta-D-glucoside.
General function:
Involved in magnesium ion binding
Specific function:
Involved in energy production. Its activity is stimulated by uncouplers of ATP synthesis
Gene Name:
PPA2
Uniprot ID:
P28239
Molecular weight:
35572.39844
Reactions
Diphosphate + H(2)O → 2 phosphate.
General function:
Involved in DNA binding
Specific function:
Integrase (IN) targets the VLP to the nucleus, where a subparticle preintegration complex (PIC) containing at least integrase and the newly synthesized dsDNA copy of the retrotransposon must transit the nuclear membrane. Once in the nucleus, integrase performs the integration of the dsDNA into the host genome
Gene Name:
TY2B-OR1
Uniprot ID:
Q12113
Molecular weight:
201982.0
Reactions
Deoxynucleoside triphosphate + DNA(n) → diphosphate + DNA(n+1).
General function:
Involved in transferase activity
Specific function:
May regulate the flux of isoprene intermediates through the sterol pathway. Squalene synthase is crucial for balancing the incorporation of farnesyl diphosphate (FPP) into sterol and nonsterol isoprene synthesis. ERG9 is also essential for cell growth in yeast
Gene Name:
ERG9
Uniprot ID:
P29704
Molecular weight:
51719.39844
Reactions
2 farnesyl diphosphate → diphosphate + presqualene diphosphate.
Presqualene diphosphate + NAD(P)H → squalene + diphosphate + NAD(P)(+).
General function:
Involved in magnesium ion binding
Specific function:
Diphosphate + H(2)O = 2 phosphate
Gene Name:
IPP1
Uniprot ID:
P00817
Molecular weight:
32299.30078
Reactions
Diphosphate + H(2)O → 2 phosphate.
General function:
Involved in transferase activity, transferring phosphorus-containing groups
Specific function:
Supplies CDP-diacylglycerol, which may play an important role as both a precursor to phosphoinositide biosynthesis in the plasma membrane and as a negative effector of phosphatidylinositol 4-kinase activity, thereby exerting an effect on cell proliferation via a lipid-dependent signal transduction cascade
Gene Name:
CDS1
Uniprot ID:
P38221
Molecular weight:
51822.39844
Reactions
CTP + phosphatidate → diphosphate + CDP-diacylglycerol.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the transfer of a farnesyl moiety from farnesyl pyrophosphate to a cysteine at the fourth position from the C-terminus of several proteins such as a-factor and RAS. The beta subunit is responsible for peptide-binding
Gene Name:
RAM1
Uniprot ID:
P22007
Molecular weight:
48189.39844
Reactions
Farnesyl diphosphate + protein-cysteine → S-farnesyl protein + diphosphate.
General function:
Involved in acid phosphatase activity
Specific function:
A phosphate monoester + H(2)O = an alcohol + phosphate
Gene Name:
PHO3
Uniprot ID:
P24031
Molecular weight:
52776.10156
Reactions
A phosphate monoester + H(2)O → an alcohol + phosphate.
General function:
Involved in protein binding
Specific function:
Required for meiosis and spore formation. Seems to be involved in the coordinate induction of late meiotic events. PLD activity is induced under sporulation conditions and seems to be necessary to complete the meiotic cycle, but not for vegetative cell growth
Gene Name:
SPO14
Uniprot ID:
P36126
Molecular weight:
195202.0
Reactions
A phosphatidylcholine + H(2)O → choline + a phosphatidate.
General function:
Involved in hydrolase activity
Specific function:
Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the conversion of tryptophan to nicotinic acid, NAD(H) and NADP(H)
Gene Name:
BNA7
Uniprot ID:
Q04066
Molecular weight:
29991.0
Reactions
N-formyl-L-kynurenine + H(2)O → formate + L-kynurenine.
General function:
Involved in oxidoreductase activity
Specific function:
Succinate semialdehyde + NAD(P)(+) + H(2)O = succinate + NAD(P)H
Gene Name:
UGA2
Uniprot ID:
P38067
Molecular weight:
54188.80078
Reactions
Succinate semialdehyde + NAD(P)(+) + H(2)O → succinate + NAD(P)H.
General function:
Involved in 3-hydroxyanthranilate 3,4-dioxygenase activity
Specific function:
Catalyzes the oxidative ring opening of 3- hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate
Gene Name:
BNA1
Uniprot ID:
P47096
Molecular weight:
20234.90039
Reactions
3-hydroxyanthranilate + O(2) → 2-amino-3-carboxymuconate semialdehyde.
General function:
Involved in hydrolase activity
Specific function:
After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol
Gene Name:
GDA1
Uniprot ID:
P32621
Molecular weight:
56821.0
Reactions
GDP + H(2)O → GMP + phosphate.
General function:
Involved in delta14-sterol reductase activity
Specific function:
Reduces the C14=C15 double bond of 4,4-dimethyl- cholesta-8,14,24-trienol to produce 4,4-dimethyl-cholesta-8,24- dienol
Gene Name:
ERG24
Uniprot ID:
P32462
Molecular weight:
50615.0
Reactions
4,4-dimethyl-5-alpha-cholesta-8,24-dien-3-beta-ol + NADP(+) → 4,4-dimethyl-5-alpha-cholesta-8,14,24-trien-3-beta-ol + NADPH.
General function:
Involved in glutamate decarboxylase activity
Specific function:
L-glutamate = 4-aminobutanoate + CO(2)
Gene Name:
GAD1
Uniprot ID:
Q04792
Molecular weight:
65989.5
Reactions
L-glutamate → 4-aminobutanoate + CO(2).
General function:
Involved in chitin synthase activity
Specific function:
Essential for septum formation and cell division. CHS2 is required for maintaining normal cell morphology
Gene Name:
CHS2
Uniprot ID:
P14180
Molecular weight:
109881.0
Reactions
UDP-N-acetyl-D-glucosamine + (1,4-(N-acetyl-beta-D-glucosaminyl))(n) → UDP + (1,4-(N-acetyl-beta-D-glucosaminyl))(n+1).
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Appears to be responsible for the synthesis of the majority of the chitin found in the cell wall periphery. It is involved in the synthesis of the chitin ring that forms in the cell wall just before bud emergence. This ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell
Gene Name:
CHS3
Uniprot ID:
P29465
Molecular weight:
131600.0
Reactions
UDP-N-acetyl-D-glucosamine + (1,4-(N-acetyl-beta-D-glucosaminyl))(n) → UDP + (1,4-(N-acetyl-beta-D-glucosaminyl))(n+1).
General function:
Involved in chitin synthase activity
Specific function:
Septum formation and repair, especially under certain adverse conditions
Gene Name:
CHS1
Uniprot ID:
P08004
Molecular weight:
129918.0
Reactions
UDP-N-acetyl-D-glucosamine + (1,4-(N-acetyl-beta-D-glucosaminyl))(n) → UDP + (1,4-(N-acetyl-beta-D-glucosaminyl))(n+1).
General function:
Involved in phosphotransferase activity, for other substituted phosphate groups
Specific function:
Catalyzes the reversible phosphatidyl group transfer from one phosphatidylglycerol molecule to another to form cardiolipin (CL) (diphosphatidylglycerol) and glycerol
Gene Name:
CRD1
Uniprot ID:
Q07560
Molecular weight:
32019.30078
Reactions
2 Phosphatidylglycerol → diphosphatidylglycerol + glycerol.
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
YPR1
Uniprot ID:
Q12458
Molecular weight:
34754.69922
Reactions
General function:
Involved in iron ion binding
Specific function:
Required for hydroxylation of C-4 in the sphingoid moiety of ceramide. Involved in the response to syringomycin
Gene Name:
SUR2
Uniprot ID:
P38992
Molecular weight:
40734.0
Reactions
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Adds the third glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation. Transfers glucose from dolichyl phosphate glucose (Dol-P-Glc) onto the lipid-linked oligosaccharide Glc(2)Man(9)GlcNAc(2)-PP-Dol
Gene Name:
DIE2
Uniprot ID:
P50076
Molecular weight:
61807.0
Reactions
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Controls the cellular levels and subcellular distribution of phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-bisphosphate. Plays an essential role in a TGN (trans Golgi network)-to-early endosome pathway. Involved in clathrin-mediated protein sorting at the TGN
Gene Name:
INP53
Uniprot ID:
Q12271
Molecular weight:
124576.0
Reactions
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H(2)O → 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate.
D-myo-inositol 1,4,5-trisphosphate + H2O → D-myo-inositol 1,4-bisphosphate + phosphate
D-myo-inositol 1,3,4,5-tetrakisphosphate + H2O → D-myo-inositol 1,3,4-trisphosphate + phosphate
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Controls the cellular levels and subcellular distribution of phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-bisphosphate. Specifically functions within the early endocytic pathway and actin organization
Gene Name:
INP52
Uniprot ID:
P50942
Molecular weight:
133330.0
Reactions
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H(2)O → 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate.
D-myo-inositol 1,4,5-trisphosphate + H2O → D-myo-inositol 1,4-bisphosphate + phosphate
D-myo-inositol 1,3,4,5-tetrakisphosphate + H2O → D-myo-inositol 1,3,4-trisphosphate + phosphate
General function:
Carbohydrate transport and metabolism
Specific function:
Involved in the synthesis of (1->6)- and (1->3)-beta-D- glucan polymers of the yeast cell wall in vivo. It is required for full activity of beta-glucan synthase in vitro. May be involved in the maturation and transport of cell wall proteins (CWP) to the cell wall. May act as a transglucosidase and contribute to the construction of a protein-bound glucan-structure that acts as an acceptor site for the addition of (1->6)-beta-D-glucan at the cell surface
Gene Name:
KRE6
Uniprot ID:
P32486
Molecular weight:
80122.10156
Reactions
General function:
Involved in catalytic activity
Specific function:
Regulatory subunit of the trehalose synthase complex that catalyzes the production of trehalose from glucose-6- phosphate and UDP-glucose in a two step process. May stabilize the trehalose synthase complex
Gene Name:
TPS3
Uniprot ID:
P38426
Molecular weight:
118834.0
Reactions
General function:
Involved in glycogen (starch) synthase activity
Specific function:
Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan. Is believed to regulate the synthesis of glycogen
Gene Name:
GSY2
Uniprot ID:
P27472
Molecular weight:
80078.20313
Reactions
UDP-glucose ((1->4)-alpha-D-glucosyl)(n) → UDP + ((1->4)-alpha-D-glucosyl)(n+1).
General function:
Involved in glycogen (starch) synthase activity
Specific function:
Transfers the glycosyl residue from UDP-Glc to the non- reducing end of alpha-1,4-glucan. Is believed to regulate the synthesis of glycogen
Gene Name:
GSY1
Uniprot ID:
P23337
Molecular weight:
80509.60156
Reactions
UDP-glucose ((1->4)-alpha-D-glucosyl)(n) → UDP + ((1->4)-alpha-D-glucosyl)(n+1).
General function:
Carbohydrate transport and metabolism
Specific function:
Required for synthesis of the major beta-glucans of the yeast cell wall
Gene Name:
SKN1
Uniprot ID:
P33336
Molecular weight:
86240.39844
Reactions
General function:
Involved in metabolic process
Specific function:
Sequentially removes both fatty acyl groups from diacylglycerophospholipids and therefore has both phospholipase A and lysophospholipase activities. Substrate preference is phosphatidylserine > phosphatidylinositol. Does not cleave phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and phosphatidylinositol-bisphosphate
Gene Name:
PLB3
Uniprot ID:
Q08108
Molecular weight:
75076.20313
Reactions
2-lysophosphatidylcholine + H(2)O → glycerophosphocholine + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Sequentially removes both fatty acyl groups from diacylglycerophospholipids and therefore has both phospholipase A and lysophospholipase activities. Substrate preference is phosphatidylserine > phosphatidylinositol >> phosphatidylcholine > phosphatidylethanolamine
Gene Name:
PLB1
Uniprot ID:
P39105
Molecular weight:
71666.60156
Reactions
2-lysophosphatidylcholine + H(2)O → glycerophosphocholine + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Intracellular phospholipase B that catalyzes the double deacylation of phosphatidylcholine (PC) to glycerophosphocholine (GroPCho). Plays an important role in membrane lipid homeostasis. Responsible for the rapid PC turnover in response to inositol, elevated temperatures, or when choline is present in the growth medium
Gene Name:
NTE1
Uniprot ID:
Q04958
Molecular weight:
187131.0
Reactions
2-lysophosphatidylcholine + H(2)O → glycerophosphocholine + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Sequentially removes both fatty acyl groups from diacylglycerophospholipids and therefore has both phospholipase A and lysophospholipase activities. Substrate preference is phosphatidylserine > phosphatidylinositol > phosphatidylcholine > phosphatidylethanolamine
Gene Name:
PLB2
Uniprot ID:
Q03674
Molecular weight:
75454.60156
Reactions
2-lysophosphatidylcholine + H(2)O → glycerophosphocholine + a carboxylate.
General function:
Involved in catalytic activity
Specific function:
Interconversion of 3- and 2-phosphoglycerate with 2,3- bisphosphoglycerate as the primer of the reaction. Can also Catalyze the reaction of EC 5.4.2.4 (synthase) and EC 3.1.3.13 (phosphatase), but with a reduced activity
Gene Name:
GPM1
Uniprot ID:
P00950
Molecular weight:
27608.30078
Reactions
2-phospho-D-glycerate → 3-phospho-D-glycerate.
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
Involved in spore wall maturation. Catalyzes a two step reaction that leads to the LL-dityrosine containing precursor of the spore wall
Gene Name:
DIT1
Uniprot ID:
P21623
Molecular weight:
61390.10156
Reactions
General function:
Involved in metal ion binding
Specific function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems
Gene Name:
SOD1
Uniprot ID:
P00445
Molecular weight:
15854.59961
Reactions
2 superoxide + 2 H(+) → O(2) + H(2)O(2).
General function:
Involved in superoxide dismutase activity
Specific function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems
Gene Name:
SOD2
Uniprot ID:
P00447
Molecular weight:
25774.09961
Reactions
2 superoxide + 2 H(+) → O(2) + H(2)O(2).
General function:
Involved in GTP cyclohydrolase I activity
Specific function:
GTP + H(2)O = formate + 2-amino-4-hydroxy-6- (erythro-1,2,3-trihydroxypropyl)-dihydropteridine triphosphate
Gene Name:
FOL2
Uniprot ID:
P51601
Molecular weight:
27768.80078
Reactions
GTP + H(2)O → formate + 2-amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)-dihydropteridine triphosphate.
General function:
Involved in zinc ion binding
Specific function:
Required for respiration and the maintenance of the mitochondrial compartment. May have a role in the mitochondrial synthesis of fatty acids
Gene Name:
ETR1
Uniprot ID:
P38071
Molecular weight:
42066.5
Reactions
Acyl-[acyl-carrier-protein] + NADP(+) → trans-2,3-dehydroacyl-[acyl-carrier-protein] + NADPH.
Acyl-CoA + NADP(+) → trans-2,3-dehydroacyl-CoA + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
2 reduced ferredoxin + NADP(+) + H(+) = 2 oxidized ferredoxin + NADPH
Gene Name:
ARH1
Uniprot ID:
P48360
Molecular weight:
56236.69922
Reactions
2 reduced ferredoxin + NADP(+) + H(+) → 2 oxidized ferredoxin + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Involved in biosynthesis of fatty acids in mitochondria
Gene Name:
OAR1
Uniprot ID:
P35731
Molecular weight:
31183.69922
Reactions
(3R)-3-hydroxyacyl-[acyl-carrier-protein] + NADP(+) → 3-oxoacyl-[acyl-carrier-protein] + NADPH.
General function:
Involved in catalytic activity
Specific function:
Oxidizes beta-NADH, beta-NADPH, and alpha-NADPH
Gene Name:
OYE2
Uniprot ID:
Q03558
Molecular weight:
45010.39844
Reactions
NADPH + acceptor → NADP(+) + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Component of the microsomal membrane bound fatty acid elongation system, which produces the 26-carbon very long-chain fatty acids (VLCFA) from palmitate. Catalyzes the reduction of the 3-ketoacyl-CoA intermediate that is formed in each cycle of fatty acid elongation. VLCFAs serve as precursors for ceramide and sphingolipids
Gene Name:
IFA38
Uniprot ID:
P38286
Molecular weight:
38707.80078
Reactions
3-hydroxyacyl-CoA + NADP(+) → 3-oxoacyl-CoA + NADPH.
General function:
Involved in catalytic activity
Specific function:
Oxidizes beta-NADH, beta-NADPH, and alpha-NADPH
Gene Name:
OYE3
Uniprot ID:
P41816
Molecular weight:
44920.10156
Reactions
NADPH + acceptor → NADP(+) + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5
Gene Name:
NCP1
Uniprot ID:
P16603
Molecular weight:
76771.10156
Reactions
NADPH + n oxidized hemoprotein → NADP(+) + n reduced hemoprotein.
General function:
Involved in oxidoreductase activity
Specific function:
Acts on thioredoxins 1 and 2
Gene Name:
TRR1
Uniprot ID:
P29509
Molecular weight:
34237.80078
Reactions
Thioredoxin + NADP(+) → thioredoxin disulfide + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Acts on mitochondrial thioredoxin 3. Implicated in the defense against oxidative stress
Gene Name:
TRR2
Uniprot ID:
P38816
Molecular weight:
37087.0
Reactions
Thioredoxin + NADP(+) → thioredoxin disulfide + NADPH.
General function:
Involved in delta24(24-1) sterol reductase activity
Specific function:
Ergosterol + NADP(+) = ergosta- 5,7,22,24(24(1))-tetraen-3-beta-ol + NADPH
Gene Name:
ERG4
Uniprot ID:
P25340
Molecular weight:
56039.30078
Reactions
Ergosterol + NADP(+) → ergosta-5,7,22,24(24(1))-tetraen-3-beta-ol + NADPH.
General function:
Involved in iron ion binding
Specific function:
Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain
Gene Name:
CYC1
Uniprot ID:
P00044
Molecular weight:
12181.90039
Reactions
General function:
Involved in iron ion binding
Specific function:
Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain
Gene Name:
CYC7
Uniprot ID:
P00045
Molecular weight:
12532.2998
Reactions
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Regulates the phosphatidylinositol (4,5)-diphosphate levels on the cytoplasmic surface of the endoplasmic reticulum and thereby regulates secretion
Gene Name:
INP54
Uniprot ID:
Q08227
Molecular weight:
43798.69922
Reactions
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H(2)O → 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate.
General function:
Involved in phosphoric ester hydrolase activity
Specific function:
The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2). Major enzyme required for hyperosmotic shock- induced turnover of PtdIns(3,5)P2 and requires VAC14 for this function. In vivo, mediates turnover of PtdIns(3,5)P2 at the vacuole membrane necessary for vacuolar size control. In vitro, catalyzes the removal of phosphate from the fifth hydroxyl of the myo-inositol ring of phosphatidylinositol-3,5-bisphosphate
Gene Name:
FIG4
Uniprot ID:
P42837
Molecular weight:
101745.0
Reactions
1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate + H(2)O → 1-phosphatidyl-1D-myo-inositol 3-phosphate + phosphate.
General function:
Involved in cyclic-nucleotide phosphodiesterase activity
Specific function:
Involved in the metabolism of ADP-ribose 1',2'-cyclic phosphate which is produced as a consequence of tRNA splicing
Gene Name:
CPD1
Uniprot ID:
P53314
Molecular weight:
26731.40039
Reactions
Nucleoside 2',3'-cyclic phosphate + H(2)O → nucleoside 2'-phosphate.
General function:
Involved in phosphoric ester hydrolase activity
Specific function:
Phosphoinositide phosphatase that hydrolyzes PtdIns(3)P and PtdIns(4)P. Has low activity towards PtdIns(3,5)P2. May be involved in the coordination of the activities of the secretory pathway and the actin cytoskeleton
Gene Name:
SAC1
Uniprot ID:
P32368
Molecular weight:
71124.10156
Reactions
General function:
Involved in phosphatase activity
Specific function:
Involved in the control of phosphotidylinositol 3- phosphate (PI(3)P)-dependent signaling and in the maintenance of endosomal system integrity
Gene Name:
YMR1
Uniprot ID:
P47147
Molecular weight:
80151.10156
Reactions
General function:
Involved in stearoyl-CoA 9-desaturase activity
Specific function:
Utilizes O(2) and electrons from the reduced cytochrome b(5) domain to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates (Probable)
Gene Name:
OLE1
Uniprot ID:
P21147
Molecular weight:
58402.60156
Reactions
Stearoyl-CoA + 2 ferrocytochrome b5 + O(2) + 2 H(+) → oleoyl-CoA + 2 ferricytochrome b5 + 2 H(2)O.
General function:
Involved in heme binding
Specific function:
Ceramide hydroxylase involved in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. Hydroxylates the very long chain fatty acid of ceramides at C2 and C3
Gene Name:
SCS7
Uniprot ID:
Q03529
Molecular weight:
44881.10156
Reactions
General function:
Involved in inositol or phosphatidylinositol phosphatase activity
Specific function:
Controls the cellular levels and subcellular distribution of phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-bisphosphate. Plays an essential role in a TGN (trans Golgi network)-to-early endosome pathway. Involved in endocytosis and acts as a negative regulator of the Slm pathway which modulates polarized actin assembly and growth
Gene Name:
INP51
Uniprot ID:
P40559
Molecular weight:
108429.0
Reactions
1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate + H(2)O → 1-phosphatidyl-1D-myo-inositol 4-phosphate + phosphate.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the dephosphorylation of diacylglycerol phosphate (DGPP) to phosphatidate (PA) and the subsequent dephosphorylation of PA to diacylglycerol (DAG). Together with DPP1, regulates intracellular DGPP and PA levels which are phospholipid molecules believed to play a signaling role in stress response. Can also use lysophosphatidic acid (LPA) as a substrate. Substrate preference is PA > DGPP > LPA
Gene Name:
LPP1
Uniprot ID:
Q04396
Molecular weight:
31585.90039
Reactions
A 1,2-diacylglycerol 3-phosphate + H(2)O → a 1,2-diacyl-sn-glycerol + phosphate.
Diacylglycerol pyrophosphate + H(2)O → phosphatidate + phosphate.
General function:
Involved in magnesium ion binding
Specific function:
One of five 2-oxo acid decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3) involved in amino acid catabolism. The enzyme catalyzes the decarboxylation of amino acids, which, in a first step, have been transaminated to the corresponding 2-oxo acids (alpha-keto-acids). In a third step, the resulting aldehydes are reduced to alcohols, collectively referred to as fusel oils or alcohols. Its preferred substrates are the transaminated amino acids leucine and isoleucine, whereas valine, aromatic amino acids, and pyruvate are no substrates. In analogy to the pyruvate decarboxylases the enzyme may in a side-reaction catalyze condensation (or carboligation) reactions leading to the formation of 2-hydroxy ketone, collectively called acyloins. The enzyme is also positively regulating the thiamine metabolism by a molecular mechanism that may involve thiamine concentration sensing and signal transmission
Gene Name:
THI3
Uniprot ID:
Q07471
Molecular weight:
68365.79688
Reactions
A 2-oxo acid → an aldehyde + CO(2).
General function:
Involved in hydrolase activity
Specific function:
Plays a crucial role in the hydrolysis of isoamyl acetate in sake mash
Gene Name:
IAH1
Uniprot ID:
P41734
Molecular weight:
27346.0
Reactions
General function:
Involved in iron ion binding
Specific function:
Catalyzes the introduction of a C-5 double bond in the B ring of ergosterol. May contribute to the regulation of ergosterol biosynthesis
Gene Name:
ERG3
Uniprot ID:
P32353
Molecular weight:
42729.89844
Reactions
General function:
Involved in catalytic activity
Specific function:
Catalyzes the dephosphorylation of diacylglycerol phosphate (DGPP) to phosphatidate (PA) and the subsequent dephosphorylation of PA to diacylglycerol (DAG). Together with LPP1, regulates intracellular DGPP and PA levels which are phospholipid molecules believed to play a signaling role in stress response. Can also use lysophosphatidic acid (LPA) as a substrate. Substrate preference is DGPP > LPA > PA
Gene Name:
DPP1
Uniprot ID:
Q05521
Molecular weight:
33513.60156
Reactions
A 1,2-diacylglycerol 3-phosphate + H(2)O → a 1,2-diacyl-sn-glycerol + phosphate.
Diacylglycerol pyrophosphate + H(2)O → phosphatidate + phosphate.
General function:
Involved in electron carrier activity
Specific function:
Not Available
Gene Name:
TRX3
Uniprot ID:
P25372
Molecular weight:
14432.0
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
P53839
Molecular weight:
38831.19922
Reactions
glycolate + NADP+ → glyoxylate + NADPH + H+.
General function:
Involved in lipid metabolic process
Specific function:
Mediates the hydrolysis of steryl esters. Required for mobilization of steryl ester, thereby playing a central role in lipid metabolism. May have weak lipase activity toward triglycerides upon some conditions, however, the relevance of such activity is unclear in vivo
Gene Name:
TGL1
Uniprot ID:
P34163
Molecular weight:
62978.39844
Reactions
A steryl ester + H(2)O → a sterol + a fatty acid.
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Adds the first Dol-P-Man derived mannose in an alpha-1,3 linkage to Man(5)GlcNAc(2)-PP-Dol. Sensitive to H.mrakii HM-1 killer toxin
Gene Name:
ALG3
Uniprot ID:
P38179
Molecular weight:
52860.39844
Reactions
General function:
Involved in hydrolase activity, acting on ester bonds
Specific function:
Lipolytic activity towards triacylglycerols and diacylglycerols with short-chain fatty acids
Gene Name:
TGL2
Uniprot ID:
P54857
Molecular weight:
37499.89844
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process
Gene Name:
TGL3
Uniprot ID:
P40308
Molecular weight:
73611.79688
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process. May have a specific role in sporulation
Gene Name:
TGL5
Uniprot ID:
Q12043
Molecular weight:
84715.10156
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in metabolic process
Specific function:
Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process. May have a specific role in sporulation
Gene Name:
TGL4
Uniprot ID:
P36165
Molecular weight:
102716.0
Reactions
Triacylglycerol + H(2)O → diacylglycerol + a carboxylate.
General function:
Involved in oxidoreductase activity
Specific function:
Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c
Gene Name:
RIP1
Uniprot ID:
P08067
Molecular weight:
23364.69922
Reactions
QH(2) + 2 ferricytochrome c → Q + 2 ferrocytochrome c + 2 H(+).
General function:
Involved in oxidoreductase activity
Specific function:
L-homoserine + NAD(P)(+) = L-aspartate 4- semialdehyde + NAD(P)H
Gene Name:
HOM6
Uniprot ID:
P31116
Molecular weight:
38501.69922
Reactions
L-homoserine + NAD(P)(+) → L-aspartate 4-semialdehyde + NAD(P)H.
General function:
Involved in hydrolase activity, hydrolyzing N-glycosyl compounds
Specific function:
Also acts on cytidine
Gene Name:
URH1
Uniprot ID:
Q04179
Molecular weight:
37960.0
Reactions
Uridine + H(2)O → D-ribose + uracil.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
3-phospho-D-glycerate + NAD(+) = 3- phosphonooxypyruvate + NADH
Gene Name:
SER3
Uniprot ID:
P40054
Molecular weight:
51192.80078
Reactions
3-phospho-D-glycerate + NAD(+) → 3-phosphonooxypyruvate + NADH.
2-hydroxyglutarate + NAD(+) → 2-oxoglutarate + NADH.
General function:
Coenzyme transport and metabolism
Specific function:
Conversion of folates to polyglutamate derivatives
Gene Name:
MET7
Uniprot ID:
Q08645
Molecular weight:
62150.89844
Reactions
ATP + tetrahydropteroyl-(gamma-Glu)(n) + L-glutamate → ADP + phosphate + tetrahydropteroyl-(gamma-Glu)(n+1).
General function:
Cell wall/membrane/envelope biogenesis
Specific function:
Mannosylates Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)- dolichol diphosphate
Gene Name:
ALG2
Uniprot ID:
P43636
Molecular weight:
58046.5
Reactions
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
(S)-malate + NAD(+) = oxaloacetate + NADH
Gene Name:
MDH1
Uniprot ID:
P17505
Molecular weight:
35649.60156
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.
General function:
Involved in glucose-6-phosphate dehydrogenase activity
Specific function:
D-glucose 6-phosphate + NADP(+) = D-glucono- 1,5-lactone 6-phosphate + NADPH
Gene Name:
ZWF1
Uniprot ID:
P11412
Molecular weight:
57521.10156
Reactions
D-glucose 6-phosphate + NADP(+) → 6-phospho-D-glucono-1,5-lactone + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid
Gene Name:
PAN5
Uniprot ID:
P38787
Molecular weight:
42820.89844
Reactions
(R)-pantoate + NADP(+) → 2-dehydropantoate + NADPH.
General function:
Involved in methylenetetrahydrofolate reductase (NADPH) activity
Specific function:
5-methyltetrahydrofolate + NAD(P)(+) = 5,10- methylenetetrahydrofolate + NAD(P)H
Gene Name:
MET13
Uniprot ID:
P53128
Molecular weight:
68559.5
Reactions
5-methyltetrahydrofolate + NAD(P)(+) → 5,10-methylenetetrahydrofolate + NAD(P)H.
General function:
Involved in pantoate-beta-alanine ligase activity
Specific function:
Required for pantothenic acid biosynthesis
Gene Name:
PAN6
Uniprot ID:
P40459
Molecular weight:
35031.89844
Reactions
ATP + (R)-pantoate + beta-alanine → AMP + diphosphate + (R)-pantothenate.
General function:
Involved in prephenate dehydratase activity
Specific function:
Prephenate = phenylpyruvate + H(2)O + CO(2)
Gene Name:
PHA2
Uniprot ID:
P32452
Molecular weight:
38224.80078
Reactions
Prephenate → phenylpyruvate + H(2)O + CO(2).
General function:
Involved in magnesium ion binding
Specific function:
5-phosphoribose 1-diphosphate synthase involved in nucleotide, histidine, and tryptophan biosynthesis. Active in heteromultimeric complexes with other 5-phosphoribose 1- diphosphate synthases (PRS2, PRS3, PRS4 and PRS5)
Gene Name:
PRS4
Uniprot ID:
P38063
Molecular weight:
35845.69922
Reactions
ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-ribose 1-diphosphate.
General function:
Involved in dihydropteroate synthase activity
Specific function:
Catalyzes three sequential steps of tetrahydrofolate biosynthesis
Gene Name:
FOL1
Uniprot ID:
P53848
Molecular weight:
93119.10156
Reactions
2-amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine → 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine + glycolaldehyde.
ATP + 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine → AMP + (2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl diphosphate.
(2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl diphosphate + 4-aminobenzoate → diphosphate + dihydropteroate.
General function:
Involved in oxidoreductase activity
Specific function:
Electron donor reductase for cytochrome b5. The cytochrome b5/NADH cytochrome b5 reductase electron transfer system supports the catalytic activity of several sterol biosynthetic enzymes. Plays a role in bud morphology
Gene Name:
CBR1
Uniprot ID:
P38626
Molecular weight:
31493.59961
Reactions
NADH + 2 ferricytochrome b5 → NAD(+) + H(+) + 2 ferrocytochrome b5.
General function:
Involved in catalytic activity
Specific function:
Converts 4-amino-4-deoxychorismate into 4-aminobenzoate (PABA) and pyruvate
Gene Name:
ABZ2
Uniprot ID:
Q03266
Molecular weight:
42639.39844
Reactions
4-amino-4-deoxychorismate → 4-aminobenzoate + pyruvate.
General function:
Involved in 6-phosphogluconolactonase activity
Specific function:
Hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate
Gene Name:
SOL3
Uniprot ID:
P38858
Molecular weight:
27784.19922
Reactions
6-phospho-D-glucono-1,5-lactone + H(2)O → 6-phospho-D-gluconate.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
4 ferrocytochrome c + O(2) + 4 H(+) = 4 ferricytochrome c + 2 H(2)O
Gene Name:
COX7
Uniprot ID:
P10174
Molecular weight:
6932.2998
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
This small integral protein plays a role in holoenzyme assembly or stability
Gene Name:
COX9
Uniprot ID:
P07255
Molecular weight:
6963.2002
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in copper ion binding
Specific function:
Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1
Gene Name:
COX2
Uniprot ID:
P00410
Molecular weight:
28566.90039
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
4 ferrocytochrome c + O(2) + 4 H(+) = 4 ferricytochrome c + 2 H(2)O
Gene Name:
COX5A
Uniprot ID:
P00424
Molecular weight:
17140.40039
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
4 ferrocytochrome c + O(2) + 4 H(+) = 4 ferricytochrome c + 2 H(2)O
Gene Name:
COX5B
Uniprot ID:
P00425
Molecular weight:
17196.59961
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
4 ferrocytochrome c + O(2) + 4 H(+) = 4 ferricytochrome c + 2 H(2)O
Gene Name:
COX8
Uniprot ID:
P04039
Molecular weight:
8906.59961
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in cytochrome-c oxidase activity
Specific function:
Subunits I, II and III form the functional core of the enzyme complex
Gene Name:
COX3
Uniprot ID:
P00420
Molecular weight:
30359.5
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
Involved in iron ion binding
Specific function:
Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B
Gene Name:
COX1
Uniprot ID:
P00401
Molecular weight:
58797.5
Reactions
4 ferrocytochrome c + O(2) + 4 H(+) → 4 ferricytochrome c + 2 H(2)O.
General function:
triglyceride metabolic process
Specific function:
Converts monoacylglycerides (MAG) to free fatty acids and glycerol. Required for efficient degradation of MAG, short-lived intermediates of glycerolipid metabolism which may also function as lipid signaling molecules. Controls inactivation of the signaling lipid N-palmitoylethanolamine (PEA).
Gene Name:
YJU3
Uniprot ID:
P28321
Molecular weight:
35562.4
Reactions
General function:
protein N-linked glycosylation
Specific function:
Adds the second glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation. Transfers glucose from dolichyl phosphate glucose (Dol-P-Glc) onto the lipid-linked oligosaccharide Glc(1)Man(9)GlcNAc(2)-PP-Dol.
Gene Name:
ALG8
Uniprot ID:
P40351
Molecular weight:
67384.29
Reactions
General function:
CDP-diacylglycerol biosynthetic process
Specific function:
Catalyzes the formation of CDP-diacylglycerol (CDP-DAG) from phosphatidic acid (PA) in the mitochondrial inner membrane. Required for the biosynthesis of the dimeric phospholipid cardiolipin, which stabilizes supercomplexes of the mitochondrial respiratory chain in the mitochondrial inner membrane.
Gene Name:
TAM41
Uniprot ID:
P53230
Molecular weight:
44199.33
Reactions
General function:
protein N-linked glycosylation
Specific function:
Adds the eighth mannose residue in an alpha-1,6 linkage onto the dolichol-PP-oligosaccharide precursor (dolichol-PP-Man(7)GlcNAc(2)) required for protein glycosylation.
Gene Name:
ALG12
Uniprot ID:
P53730
Molecular weight:
62671.87
Reactions
General function:
protein glycosylation
Specific function:
Catalyzes the transfer of mannose from Dol-P-Man to lipid-linked oligosaccharides.
Gene Name:
ALG9
Uniprot ID:
P53868
Molecular weight:
63776.03
Reactions
General function:
protein glycosylation
Specific function:
Required for N-linked oligosaccharide assembly. Has a role in the last step of the synthesis of the Man(5)GlcNAc(2)-PP-dolichol core oligosaccharide on the cytoplasmic face of the endoplasmic reticulum.
Gene Name:
ALG11
Uniprot ID:
P53954
Molecular weight:
63142.705
Reactions
General function:
ferulate metabolic process
Specific function:
Catalyzes the reversible decarboxylation of aromatic carboxylic acids like ferulic acid, p-coumaric acid or cinnamic acid, producing the corresponding vinyl derivatives 4-vinylphenol, 4-vinylguaiacol, and styrene, respectively, which play the role of aroma metabolites (PubMed:20471595, PubMed:25647642). Not essential for ubiquinone synthesis (PubMed:20471595).
Gene Name:
FDC1
Uniprot ID:
Q03034
Molecular weight:
56163.39
Reactions
General function:
protein N-linked glycosylation
Specific function:
Adds the first glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation. Transfers glucose from dolichyl phosphate glucose (Dol-P-Glc) onto the lipid-linked oligosaccharide Man(9)GlcNAc(2)-PP-Dol.
Gene Name:
ALG6
Uniprot ID:
Q12001
Molecular weight:
62782.275
Reactions

Transporters

General function:
Amino acid transport and metabolism
Specific function:
Involved in amino acid efflux from the vacuole to the cytoplasm. Capable of transporting large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine and leucine
Gene Name:
AVT3
Uniprot ID:
P36062
Molecular weight:
75458.70313
General function:
Amino acid transport and metabolism
Specific function:
Required for the vacuolar uptake of large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine and leucine. Requires ATP for function
Gene Name:
AVT1
Uniprot ID:
P47082
Molecular weight:
65345.30078
General function:
Involved in transport
Specific function:
Permease for various amino acids as well as for GABA. Can also transport L-cysteine and beta-alanine
Gene Name:
GAP1
Uniprot ID:
P19145
Molecular weight:
65654.89844
General function:
Involved in transport
Specific function:
High affinity transport of glutamine. Also transport Leu, Ser, Thr, Cys, Met and Asn
Gene Name:
GNP1
Uniprot ID:
P48813
Molecular weight:
73597.39844
General function:
Amino acid transport and metabolism
Specific function:
Involved in amino acid efflux from the vacuole to the cytoplasm. Capable of transporting large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine and leucine
Gene Name:
AVT4
Uniprot ID:
P50944
Molecular weight:
80025.0
General function:
Involved in transport
Specific function:
Can transport glutamate, aspartate, glutamine, asparagine, serine, alanine and glycine
Gene Name:
DIP5
Uniprot ID:
P53388
Molecular weight:
68096.70313
General function:
Involved in transporter activity
Specific function:
Required for active transport of urea
Gene Name:
DUR3
Uniprot ID:
P33413
Molecular weight:
80616.10156
General function:
Involved in transport
Specific function:
Required for high-affinity proline transport. May be responsible for proline recognition and probably also for proline translocation across the plasma membrane. Also function as non- specific GABA permease. Can also transport alanine and glycine
Gene Name:
PUT4
Uniprot ID:
P15380
Molecular weight:
68786.79688
General function:
Involved in transport
Specific function:
Required for high-affinity tryptophan transport. Also transports cysteine, phenyalanine and tyrosine
Gene Name:
TAT2
Uniprot ID:
P38967
Molecular weight:
65403.80078
General function:
Involved in transport
Specific function:
Permease for leucine, valine and isoleucine. Also transports cysteine, methionine, phenyalanine, tyrosine and tryptophan
Gene Name:
BAP2
Uniprot ID:
P38084
Molecular weight:
67669.60156
General function:
Involved in transport
Specific function:
High-affinity transport of valine and tyrosine. Low- affinity transport of tryptophan. Can also transport L-cysteine
Gene Name:
TAT1
Uniprot ID:
P38085
Molecular weight:
68756.89844
General function:
Involved in transport
Specific function:
Involved in transport of isoleucine, leucine, valine, cysteine, methionine, phenylalanine, tyrosine and tryptophan
Gene Name:
BAP3
Uniprot ID:
P41815
Molecular weight:
67364.39844
General function:
Involved in binding
Specific function:
Not Available
Gene Name:
RIM2
Uniprot ID:
P38127
Molecular weight:
42101.39844
General function:
Involved in nucleoside transmembrane transporter activity
Specific function:
Has broad nucleoside selectivity (uridine, ademosine and cytidine) and most likely functions to transport nucleosides across intracellular membranes
Gene Name:
FUN26
Uniprot ID:
P31381
Molecular weight:
58316.69922
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT9
Uniprot ID:
P40885
Molecular weight:
62857.19922
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT14
Uniprot ID:
P42833
Molecular weight:
60978.10156
General function:
Involved in transmembrane transporter activity
Specific function:
GAL2 is a facilitated diffusion transporter required for both the high-affinity galactokinase-dependent and low-affinity galactokinase-independent galactose transport processes
Gene Name:
GAL2
Uniprot ID:
P13181
Molecular weight:
63625.39844
General function:
Involved in transmembrane transporter activity
Specific function:
Not Available
Gene Name:
STL1
Uniprot ID:
P39932
Molecular weight:
63531.19922
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT11
Uniprot ID:
P54862
Molecular weight:
62732.19922
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT10
Uniprot ID:
P43581
Molecular weight:
60661.5
General function:
Involved in transport
Specific function:
Broad substrate range permease which transports asparagine and glutamine with intermediate specificity. Also transports Ala, Cys, Gly, Ile, Leu, Met, Phe, Ser, Thr, Tyr and Val. Important for the utilization of amino acids as a nitrogen source
Gene Name:
AGP1
Uniprot ID:
P25376
Molecular weight:
69670.70313
General function:
Involved in adenine nucleotide transmembrane transporte
Specific function:
Adenine nucleotide transporter involved in the uniport of ATP and adenine nucleotide hetero-exchange transport between the cytosol and the peroxisomal lumen. This transport is accompanied by a proton transport from the peroxisomal lumen to the cytosol. Transport of ATP into the peroxisome is required for beta-oxydation of medium-chain fatty acids. Required for growth on medium-chain fatty acids, pH gradient formation in peroxisomes and for normal peroxisome proliferation
Gene Name:
ANT1
Uniprot ID:
Q06497
Molecular weight:
36367.0
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Transport of uracil
Gene Name:
FUR4
Uniprot ID:
P05316
Molecular weight:
71735.10156
General function:
Involved in transport
Specific function:
General amino acid permease with broad substrate specificity
Gene Name:
AGP3
Uniprot ID:
P43548
Molecular weight:
61051.19922
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
High-affinity transport of uridine
Gene Name:
FUI1
Uniprot ID:
P38196
Molecular weight:
72164.39844
General function:
Involved in transmembrane transport
Specific function:
Cell membrane polyamine/proton antiporter, involved in the detoxification of excess polyamines in the cytoplasm. Recognizes spermidine, spermine and the antimalarial drug quinidine, but not quinine, chloroquine and mefloquine
Gene Name:
TPO4
Uniprot ID:
Q12256
Molecular weight:
73222.20313
General function:
Involved in transmembrane transport
Specific function:
Cell membrane polyamine/proton antiporter, involved in the detoxification of excess polyamines in the cytoplasm. Catalyzes polyamine uptake at alkaline pH and excretion at acidic pH. Recognizes spermidine, spermine and putrescine, the polyamine analogs methylglyoxal bis(guanylhydrazone) (MGBG) and paraquat, the antimalarial drug quinidine, and cycloheximide. Confers resistance to the non-steroidal anti-inflammatory drug indomethacin
Gene Name:
TPO1
Uniprot ID:
Q07824
Molecular weight:
64271.60156
General function:
Involved in transmembrane transporter activity
Specific function:
Major transporter for myo-inositol
Gene Name:
ITR1
Uniprot ID:
P30605
Molecular weight:
63569.10156
General function:
Involved in DNA binding
Specific function:
Integrase (IN) targets the VLP to the nucleus, where a subparticle preintegration complex (PIC) containing at least integrase and the newly synthesized dsDNA copy of the retrotransposon must transit the nuclear membrane. Once in the nucleus, integrase performs the integration of the dsDNA into the host genome
Gene Name:
TY1B-OL
Uniprot ID:
Q12273
Molecular weight:
198613.0
Reactions
Deoxynucleoside triphosphate + DNA(n) → diphosphate + DNA(n+1).
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Responsible for intake of thiamine
Gene Name:
THI7
Uniprot ID:
Q05998
Molecular weight:
66903.29688
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Responsible for intake of thiamine
Gene Name:
Not Available
Uniprot ID:
Q08485
Molecular weight:
67192.89844
General function:
Involved in transport
Specific function:
Sole choline transporter in yeast
Gene Name:
HNM1
Uniprot ID:
P19807
Molecular weight:
62055.39844
General function:
Involved in transport
Specific function:
High-affinity S-adenosylmethionine permease, required for utilization of S-adenosylmethionine as a sulfur source
Gene Name:
SAM3
Uniprot ID:
Q08986
Molecular weight:
64353.0
General function:
Involved in transport
Specific function:
General amino acid permease with broad substrate specificity. Can also transport carnitine
Gene Name:
AGP2
Uniprot ID:
P38090
Molecular weight:
67261.29688
General function:
Involved in guanine nucleotide transmembrane transporte
Specific function:
Not Available
Gene Name:
YHM1
Uniprot ID:
P38988
Molecular weight:
33215.19922
General function:
Involved in transmembrane transport
Specific function:
Involved in uptake of biotin with the concomitant entry of protons
Gene Name:
VHT1
Uniprot ID:
P53241
Molecular weight:
69082.10156
General function:
Involved in transmembrane transporter activity
Specific function:
High-affinity glucose transporter
Gene Name:
HXT6
Uniprot ID:
P39003
Molecular weight:
62704.60156
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT8
Uniprot ID:
P40886
Molecular weight:
63492.0
General function:
Involved in transmembrane transporter activity
Specific function:
High-affinity glucose transporter. Is only indispensable for growth on low glucose-containing media, because S.cerevisiae possesses other sugar transporters
Gene Name:
HXT2
Uniprot ID:
P23585
Molecular weight:
59840.19922
General function:
Involved in transmembrane transporter activity
Specific function:
Low-affinity glucose transporter. HXT1 is as well involved in the transport of mannose
Gene Name:
HXT1
Uniprot ID:
P32465
Molecular weight:
63260.89844
General function:
Involved in transmembrane transporter activity
Specific function:
Low-affinity glucose transporter
Gene Name:
HXT3
Uniprot ID:
P32466
Molecular weight:
62557.19922
General function:
Involved in transmembrane transporter activity
Specific function:
Low-affinity glucose transporter. Can also transport xylose
Gene Name:
HXT4
Uniprot ID:
P32467
Molecular weight:
63909.60156
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT17
Uniprot ID:
P53631
Molecular weight:
62827.69922
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT16
Uniprot ID:
P47185
Molecular weight:
62919.89844
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT5
Uniprot ID:
P38695
Molecular weight:
66251.0
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT13
Uniprot ID:
P39924
Molecular weight:
62733.60156
General function:
Involved in transmembrane transporter activity
Specific function:
Probable glucose transporter
Gene Name:
HXT15
Uniprot ID:
P54854
Molecular weight:
62930.89844
General function:
Involved in transport
Specific function:
Very low affinity permease for methionine
Gene Name:
MUP3
Uniprot ID:
P38734
Molecular weight:
60619.10156
General function:
Involved in transport
Specific function:
High affinity permease for methionine
Gene Name:
MUP1
Uniprot ID:
P50276
Molecular weight:
63220.80078
General function:
Involved in transmembrane transport
Specific function:
Transporter required for vacuolar uptake of at least histidine and lysine
Gene Name:
VBA1
Uniprot ID:
Q04301
Molecular weight:
62638.80078
General function:
Involved in transmembrane transport
Specific function:
Transporter required for vacuolar uptake of histidine and lysine
Gene Name:
VBA3
Uniprot ID:
P25594
Molecular weight:
50224.89844
General function:
Involved in transmembrane transport
Specific function:
Transporter required for vacuolar uptake of histidine, arginine and lysine and to a lesser extent tyrosine
Gene Name:
VBA2
Uniprot ID:
P38358
Molecular weight:
51676.39844
General function:
Involved in transport
Specific function:
High-affinity permease for lysine
Gene Name:
LYP1
Uniprot ID:
P32487
Molecular weight:
68089.10156
General function:
Involved in transport
Specific function:
High-affinity S-methylmethionine (SMM) permease, required for utilization of S-methylmethionine as a sulfur source
Gene Name:
MMP1
Uniprot ID:
Q12372
Molecular weight:
64217.0
General function:
Involved in transport
Specific function:
High-affinity permease for histidine
Gene Name:
HIP1
Uniprot ID:
P06775
Molecular weight:
66005.60156
General function:
Involved in carbohydrate transmembrane transporter activity
Specific function:
Essential to lactate transport
Gene Name:
JEN1
Uniprot ID:
P36035
Molecular weight:
69375.60156
General function:
Involved in transmembrane transport
Specific function:
Transports pantothenate into the cell. Also involved in the catabolite repression-mediated regulation of ergosterol biosynthesis and in fenpropimorph resistance
Gene Name:
FEN2
Uniprot ID:
P25621
Molecular weight:
58256.0
General function:
Involved in ATP binding
Specific function:
Exhibits ATP-dependent bile acid transport
Gene Name:
YBT1
Uniprot ID:
P32386
Molecular weight:
189160.0
Reactions
General function:
Involved in inorganic phosphate transmembrane transporter activity
Specific function:
High-affinity transporter for external inorganic phosphate. Is not an essential protein, since a constitutive, low affinity pI transporter exists in yeast
Gene Name:
PHO84
Uniprot ID:
P25297
Molecular weight:
64381.5
General function:
Involved in binding
Specific function:
Required for arginine biosynthesis. May participate in the export of matrix-made ornithine into the cytosol
Gene Name:
ORT1
Uniprot ID:
Q12375
Molecular weight:
31579.5
General function:
Involved in transporter activity
Specific function:
Catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane
Gene Name:
AAC1
Uniprot ID:
P04710
Molecular weight:
34120.19922
General function:
Involved in protein binding
Specific function:
May be involved in protein sorting and cell wall formation
Gene Name:
BPH1
Uniprot ID:
P25356
Molecular weight:
250870.0
General function:
Involved in binding
Specific function:
Calcium-dependent mitochondrial aspartate and glutamate carrier. Transport of glutamate in mitochondria is required for mitochondrial transamination reactions and ornithine synthesis. Plays also a role in malate-aspartate NADH shuttle, which is critical for growth on acetate and fatty acids
Gene Name:
AGC1
Uniprot ID:
Q12482
Molecular weight:
104303.0
General function:
Involved in transporter activity
Specific function:
Catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane
Gene Name:
AAC3
Uniprot ID:
P18238
Molecular weight:
33312.60156
General function:
Involved in transporter activity
Specific function:
Catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane
Gene Name:
AAC2
Uniprot ID:
P18239
Molecular weight:
34425.89844
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Probable purine-cytosine permease
Gene Name:
FCY21
Uniprot ID:
P40039
Molecular weight:
58049.60156
General function:
Involved in transport
Specific function:
High-affinity permease for basic amino acids
Gene Name:
ALP1
Uniprot ID:
P38971
Molecular weight:
64012.89844
General function:
Involved in amino acid transmembrane transporter activity
Specific function:
Transport into the cell of 7-keto 8-aminopelargonic acid
Gene Name:
BIO5
Uniprot ID:
P53744
Molecular weight:
62427.5
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
This permease has a broad specificity towards purines, and also transport cytosine and 5-methylcytosine but neither uracil nor thymine
Gene Name:
FCY2
Uniprot ID:
P17064
Molecular weight:
58200.69922
General function:
Involved in nucleobase transmembrane transporter activity
Specific function:
Probable purine-cytosine permease
Gene Name:
FCY22
Uniprot ID:
Q12119
Molecular weight:
57326.69922
General function:
Involved in transmembrane transporter activity
Specific function:
High-affinity uptake of alpha-glucosides such as maltose, turanose, isomaltose, alpha-methylglucoside, maltotriose, palatinose, trehalose, melezitose and glucose. Acts with the concomitant transport of protons into the cell (symport system)
Gene Name:
MAL11
Uniprot ID:
P53048
Molecular weight:
67979.60156
General function:
Involved in transporter activity
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
P27514
Molecular weight:
99489.29688
General function:
Involved in transporter activity
Specific function:
Not Available
Gene Name:
Not Available
Uniprot ID:
P39535
Molecular weight:
97687.5
General function:
Involved in binding
Specific function:
Transport of phosphate groups from the cytosol to the mitochondrial matrix
Gene Name:
MIR1
Uniprot ID:
P23641
Molecular weight:
32811.80078
General function:
Involved in citrate transmembrane transporter activity
Specific function:
Involved in the uptake of inorganic phosphate
Gene Name:
PHO87
Uniprot ID:
P25360
Molecular weight:
102539.0
General function:
Involved in transport
Specific function:
Required for high-affinity, high-specificity GABA transport. Also transports putrescine
Gene Name:
UGA4
Uniprot ID:
P32837
Molecular weight:
61872.30078
General function:
Involved in cation transmembrane transporter activity
Specific function:
This protein is required for high-affinity potassium transport
Gene Name:
TRK1
Uniprot ID:
P12685
Molecular weight:
141072.0
General function:
Involved in inorganic phosphate transmembrane transporter activity
Specific function:
Sodium-phosphate symporter. Active in early growth phase
Gene Name:
PHO89
Uniprot ID:
P38361
Molecular weight:
62652.89844
General function:
Involved in sodium:hydrogen antiporter activity
Specific function:
Sodium export from cell, takes up external protons in exchange for internal sodium ions
Gene Name:
NHA1
Uniprot ID:
Q99271
Molecular weight:
109368.0
General function:
Involved in L-cystine transmembrane transporter activity
Specific function:
Transport cystine out of vacuoles/endodomes
Gene Name:
ERS1
Uniprot ID:
P17261
Molecular weight:
30116.0
General function:
Involved in transport
Specific function:
Involved in the import of activated long-chain fatty acids from the cytosol to the peroxisomal matrix
Gene Name:
PXA2
Uniprot ID:
P34230
Molecular weight:
97125.29688
General function:
Amino acid transport and metabolism
Specific function:
Involved in amino acid efflux from the vacuole to the cytoplasm. Capable of transporting aspartate and glutamate. Requires ATP for function
Gene Name:
AVT6
Uniprot ID:
P40074
Molecular weight:
48839.69922
General function:
Involved in transmembrane transporter activity
Specific function:
High-affinity uptake of maltose and maltotriose. Also transports turanose but not alpha-methylglucoside, melezitose or trehalose
Gene Name:
MAL31
Uniprot ID:
P38156
Molecular weight:
68262.20313
General function:
Involved in transport
Specific function:
High-affinity permease for arginine
Gene Name:
CAN1
Uniprot ID:
P04817
Molecular weight:
65784.79688
General function:
Involved in binding
Specific function:
Transports oxaloacetate and sulfate
Gene Name:
OAC1
Uniprot ID:
P32332
Molecular weight:
35152.80078
General function:
Involved in transmembrane transporter activity
Specific function:
High-affinity glucose transporter
Gene Name:
HXT7
Uniprot ID:
P39004
Molecular weight:
62734.60156