You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00779
Namealdehydo-D-Xylose
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionD-Xylose, also known as D-xylopentose or xylose, belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. D-Xylose is an extremely weak basic (essentially neutral) compound (based on its pKa). D-Xylose exists in all living species, ranging from bacteria to humans. D-xylose can be converted into D-xylitol through its interaction with the enzyme trifunctional aldehyde reductase/xylose reductase/glucose 1-dehydrogenase (nadp(+)). In yeast, D-xylose is involved in the metabolic pathway called the xylitol degradation pathway. D-Xylose is a potentially toxic compound.
Structure
Thumb
Synonyms
  • (+)-Xylose
  • (D)-Xylose
  • aldehydo-D-xylose
  • D-(+)-xylose
  • D-Xyl
  • D-xylo-pentose
  • d-Xylose
  • Pentose
  • wood sugar
  • Xylo-pfan
  • Xylomed
  • Xylose
  • Xylose, d-
  • Xyloside
  • (3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetrol
  • D-Xylopentose
  • Xylopyranose
  • D Xylose
  • D-Xylopyranose
CAS number58-86-6
WeightAverage: 150.1299
Monoisotopic: 150.05282343
InChI KeyPYMYPHUHKUWMLA-VPENINKCSA-N
InChIInChI=1S/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5+/m0/s1
IUPAC Name(3R,4S,5R)-oxane-2,3,4,5-tetrol
Traditional IUPAC Named-xylose
Chemical FormulaC5H10O5
SMILES[H][C@@](O)(CO)[C@]([H])(O)[C@@]([H])(O)C=O
Chemical Taxonomy
Description belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentPentoses
Alternative Parents
Substituents
  • Pentose monosaccharide
  • Oxane
  • Secondary alcohol
  • Hemiacetal
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Hydrocarbon derivative
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Charge0
Melting point90.5 °C
Experimental Properties
PropertyValueReference
Water Solubility555 mg/mL [MERCK INDEX (1996)]PhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
Water Solubility1220 g/LALOGPS
logP-2.6ALOGPS
logP-2.3ChemAxon
logS0.91ALOGPS
pKa (Strongest Acidic)11.31ChemAxon
pKa (Strongest Basic)-3.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area90.15 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity29.96 m³·mol⁻¹ChemAxon
Polarizability13.43 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • extracellular
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
Amino sugar and nucleotide sugar metabolismPW002413 ThumbThumb?image type=greyscaleThumb?image type=simple
Starch and sucrose metabolismPW002481 ThumbThumb?image type=greyscaleThumb?image type=simple
xylitol degradationPW002433 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Amino sugar and nucleotide sugar metabolismec00520 Map00520
Pentose and glucuronate interconversionsec00040 Map00040
Starch and sucrose metabolismec00500 Map00500
SMPDB Reactions
aldehydo-D-Xylose + NADPD-Xylitol + NADPH + hydron
KEGG Reactions
aldehydo-D-Xylose + NADPH + hydronNADP + Xylitol
Concentrations
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Senac, T., Hahn-Hagerdal, B. (1990). "Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells." Appl Environ Microbiol 56:120-126.16348083
Synthesis Reference:Lavarack, B. P.; Griffin, G.; Rodman, D. Optimizing the autohydrolysis of bagasse to extract D-xylose. Proceedings of the Conference of the Australian Society of Sugar Cane Technologists (1999), 21st 394-400.
External Links:
ResourceLink
CHEBI ID15936
HMDB IDHMDB00098
Pubchem Compound ID644160
Kegg IDC00181
ChemSpider ID119104
FOODB IDFDB001136
WikipediaXylose
BioCyc IDXYLOSE

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Reduces the cytotoxic compound methylglyoxal (MG) to (R)-lactaldehyde similar to GRE2. MG is synthesized via a bypath of glycolysis from dihydroxyacetone phosphate and is believed to play a role in cell cycle regulation and stress adaptation. In pentose-fermenting yeasts, aldose reductase catalyzes the reduction of xylose into xylitol. The purified enzyme catalyzes this reaction, but the inability of S.cerevisiae to grow on xylose as sole carbon source indicates that the physiological function is more likely methylglyoxal reduction
Gene Name:
GRE3
Uniprot ID:
P38715
Molecular weight:
37118.5
Reactions
Alditol + NAD(P)(+) → aldose + NAD(P)H.
(R)-lactaldehyde + NADP(+) → methylglyoxal + NADPH.