You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00538
Namestearoyl-CoA
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionStearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids. Fatty acids must be activated with CoA before any chemical modification can be applied. Also fatty acid metabolic intermediates will also exists as CoA derivatives until the CoA is enzymatically cleaved. The fatty acid group is linked to the terminal thoil moiety of CoA.
Structure
Thumb
Synonyms
  • Octadecanoyl-CoA
  • Octadecanoyl-coenzyme A
  • S-octadecanoate
  • S-octadecanoate CoA
  • S-octadecanoate Coenzyme A
  • S-octadecanoic acid
  • S-stearate CoA
  • S-stearate Coenzyme A
  • S-Stearoylcoenzyme A
  • Stearoyl coenzyme A
  • Stearoyl coenzyme A ester
  • Stearoyl-CoA
  • Stearoyl-coenzyme A
  • Stearyl coenzyme A
  • Stearyl-CoA
  • Stearyl-Coenzyme A
  • C18:0-CoA
  • C18:0-coenzyme A
  • S-Stearoyl-CoA
CAS number362-66-3
WeightAverage: 1033.996
Monoisotopic: 1033.376174075
InChI KeySIARJEKBADXQJG-LFZQUHGESA-N
InChIInChI=1S/C39H70N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-30(48)67-23-22-41-29(47)20-21-42-37(51)34(50)39(2,3)25-60-66(57,58)63-65(55,56)59-24-28-33(62-64(52,53)54)32(49)38(61-28)46-27-45-31-35(40)43-26-44-36(31)46/h26-28,32-34,38,49-50H,4-25H2,1-3H3,(H,41,47)(H,42,51)(H,55,56)(H,57,58)(H2,40,43,44)(H2,52,53,54)/t28-,32-,33-,34+,38-/m1/s1
IUPAC Name{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional IUPAC Namestearoyl-coa
Chemical FormulaC39H70N7O17P3S
SMILESCCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
Chemical Taxonomy
Description belongs to the class of organic compounds known as long-chain fatty acyl coas. These are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentLong-chain fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • Monoalkyl phosphate
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Imidolactam
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Tetrahydrofuran
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Thiocarboxylic acid ester
  • Secondary alcohol
  • Amino acid or derivatives
  • Carbothioic s-ester
  • Thiocarboxylic acid or derivatives
  • Sulfenyl compound
  • Propargyl-type 1,3-dipolar organic compound
  • Carboximidic acid
  • Carboximidic acid derivative
  • Carboxylic acid derivative
  • Organic 1,3-dipolar compound
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic oxide
  • Amine
  • Hydrocarbon derivative
  • Primary amine
  • Carbonyl group
  • Alcohol
  • Organosulfur compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateSolid
Charge0
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water SolubilityNot AvailablePhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
Water Solubility0.95 g/LALOGPS
logP2.86ALOGPS
logP0.39ChemAxon
logS-3ALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 ŲChemAxon
Rotatable Bond Count36ChemAxon
Refractivity245.85 m³·mol⁻¹ChemAxon
Polarizability105.93 ųChemAxon
Number of Rings3ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • lipid particle
  • endoplasmic reticulum
  • peroxisome
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
Biosynthesis of unsaturated fatty acidsPW002403 ThumbThumb?image type=greyscaleThumb?image type=simple
Biosynthesis of unsaturated fatty acids (docosanoyl)PW002408 ThumbThumb?image type=greyscaleThumb?image type=simple
Biosynthesis of unsaturated fatty acids (icosanoyl)PW002434 ThumbThumb?image type=greyscaleThumb?image type=simple
Biosynthesis of unsaturated fatty acids (stearoyl)PW002435 ThumbThumb?image type=greyscaleThumb?image type=simple
Biosynthesis of unsaturated fatty acids (tetracosanoyl-CoA)PW002404 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Biosynthesis of unsaturated fatty acidsec01040 Map01040
SMPDB Reactions
stearoyl-CoA + hydron + malonyl-CoA3-oxoicosanoyl-CoA + Coenzyme A + Carbon dioxide
stearoyl-CoA + hydron + malonyl-CoA3-oxoicosanoyl-CoA + Coenzyme A + Carbon dioxide
trans-octadec-2-enoyl-CoA + hydron + NADPHstearoyl-CoA + NADP
stearoyl-CoA + waterhydron + Coenzyme A + stearic acid
stearoyl-CoA + PhytosphingosineCoenzyme A + hydron + N-stearoylphytosphingosine
KEGG Reactions
stearoyl-CoA + oxygentrans-octadec-2-enoyl-CoA + Hydrogen peroxide
Coenzyme A + oxygen + NAD + Tetracosanoyl-CoA + waterNADH + stearoyl-CoA + Acetyl-CoA + Hydrogen peroxide + hydron
stearic acid + Adenosine triphosphate + Coenzyme AAdenosine monophosphate + Pyrophosphate + stearoyl-CoA
Palmityl-CoA + malonyl-CoA + hydron + NADPHCarbon dioxide + NADP + stearoyl-CoA + water + Coenzyme A
stearoyl-CoA + waterstearic acid + hydron + Coenzyme A
Concentrations
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Hiltunen, J. K., Mursula, A. M., Rottensteiner, H., Wierenga, R. K., Kastaniotis, A. J., Gurvitz, A. (2003). "The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae." FEMS Microbiol Rev 27:35-64.12697341
  • Jones, J. M., Nau, K., Geraghty, M. T., Erdmann, R., Gould, S. J. (1999). "Identification of peroxisomal acyl-CoA thioesterases in yeast and humans." J Biol Chem 274:9216-9223.10092594
Synthesis Reference:Boiron F; Heape M A; Cassagne C Assay of stearoyl-CoA synthesis in microsomes from normal and Trembler mouse sciatic nerves. Neuroscience letters (1984), 48(1), 7-12.
External Links:
ResourceLink
CHEBI ID15541
HMDB IDHMDB01114
Pubchem Compound ID439229
Kegg IDC00412
ChemSpider ID84957
FOODB IDNot Available
Wikipedia IDNot Available
BioCyc IDSTEAROYL-COA

Enzymes

General function:
Involved in catalytic activity
Specific function:
Esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Contributes, with FAA1, to the activation of imported myristate
Gene Name:
FAA4
Uniprot ID:
P47912
Molecular weight:
77266.5
Reactions
ATP + a long-chain carboxylic acid + CoA → AMP + diphosphate + an acyl-CoA.
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Acyl-CoA + O(2) = trans-2,3-dehydroacyl-CoA + H(2)O(2)
Gene Name:
POX1
Uniprot ID:
P13711
Molecular weight:
84041.39844
Reactions
Acyl-CoA + O(2) → trans-2,3-dehydroacyl-CoA + H(2)O(2).
General function:
Involved in catalytic activity
Specific function:
Esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. It may supplement intracellular myristoyl-CoA pools from exogenous myristate. Preferentially acts on C12:0-C16:0 fatty acids with myristic and pentadecanic acid (C15:0) having the highest activities
Gene Name:
FAA1
Uniprot ID:
P30624
Molecular weight:
77865.79688
Reactions
ATP + a long-chain carboxylic acid + CoA → AMP + diphosphate + an acyl-CoA.
General function:
Involved in catalytic activity
Specific function:
Esterification, concomitant with transport, of endogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. This enzyme acts preferentially on C16 and C18 fatty acids with a cis-double bond at C-9-C-10
Gene Name:
FAA3
Uniprot ID:
P39002
Molecular weight:
77946.0
Reactions
ATP + a long-chain carboxylic acid + CoA → AMP + diphosphate + an acyl-CoA.
General function:
Involved in fatty acid elongase activity
Specific function:
May be a membrane bound enzyme involved in the highly specific elongation of saturated 14-carbon fatty acids (14:0) to 16-carbon species (16:0)
Gene Name:
ELO1
Uniprot ID:
P39540
Molecular weight:
36233.60156
Reactions
Acyl-CoA + malonyl-CoA → 3-oxoacyl-CoA + CoA + CO(2).
General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for:[acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase
Gene Name:
FAS1
Uniprot ID:
P07149
Molecular weight:
228689.0
Reactions
Acetyl-CoA + n malonyl-CoA + 2n NADH + 2n NADPH → long-chain-acyl-CoA + n CoA + n CO(2) + 2n NAD(+) + 2n NADP(+).
Acetyl-CoA + [acyl-carrier-protein] → CoA + acetyl-[acyl-carrier-protein].
Malonyl-CoA + [acyl-carrier-protein] → CoA + malonyl-[acyl-carrier-protein].
(3R)-3-hydroxypalmitoyl-[acyl-carrier-protein] → hexadec-2-enoyl-[acyl-carrier-protein] + H(2)O.
Acyl-[acyl-carrier-protein] + NAD(+) → trans-2,3-dehydroacyl-[acyl-carrier-protein] + NADH.
Oleoyl-[acyl-carrier-protein] + H(2)O → [acyl-carrier-protein] + oleate.
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH
Gene Name:
TES1
Uniprot ID:
P41903
Molecular weight:
40259.39844
Reactions
Palmitoyl-CoA + H(2)O → CoA + palmitate.
General function:
Involved in zinc ion binding
Specific function:
Required for respiration and the maintenance of the mitochondrial compartment. May have a role in the mitochondrial synthesis of fatty acids
Gene Name:
ETR1
Uniprot ID:
P38071
Molecular weight:
42066.5
Reactions
Acyl-[acyl-carrier-protein] + NADP(+) → trans-2,3-dehydroacyl-[acyl-carrier-protein] + NADPH.
Acyl-CoA + NADP(+) → trans-2,3-dehydroacyl-CoA + NADPH.
General function:
Involved in stearoyl-CoA 9-desaturase activity
Specific function:
Utilizes O(2) and electrons from the reduced cytochrome b(5) domain to catalyze the insertion of a double bond into a spectrum of fatty acyl-CoA substrates (Probable)
Gene Name:
OLE1
Uniprot ID:
P21147
Molecular weight:
58402.60156
Reactions
Stearoyl-CoA + 2 ferrocytochrome b5 + O(2) + 2 H(+) → oleoyl-CoA + 2 ferricytochrome b5 + 2 H(2)O.

Transporters

General function:
Involved in transport
Specific function:
Involved in the import of activated long-chain fatty acids from the cytosol to the peroxisomal matrix
Gene Name:
PXA2
Uniprot ID:
P34230
Molecular weight:
97125.29688