You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionMalonyl-CoA is a coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems. Fatty acids must be activated with CoA before any chemical modification can be applied. Also fatty acid metabolic intermediates will also exists as CoA derivatives until the CoA is enzymatically cleaved. The fatty acid group is linked to the terminal thoil moiety of CoA.
  • Malonyl CoA
  • Malonyl Coenzyme A
  • malonyl-CoA
  • malonyl-Coenzyme A
  • omega-Carboxyacyl-CoA
  • omega-Carboxyacyl-Coenzyme A
  • S-(Hydrogen malonyl)coenzyme A
  • S-(hydrogen propanedioate
  • S-(hydrogen propanedioate) CoA
  • S-(hydrogen propanedioate) Coenzyme A
  • S-(hydrogen propanedioic acid
  • coenzyme A, S-(Hydrogen propanedioate)
  • coenzyme A, S-(Hydrogen propanedioic acid)
  • CoA, Malonyl
  • coenzyme A, Malonyl
CAS number524-14-1
WeightAverage: 853.58
Monoisotopic: 853.115602295
IUPAC Name3-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-oxopropanoic acid
Traditional IUPAC Namemalonyl-coa
Chemical FormulaC24H38N7O19P3S
Chemical Taxonomy
Description belongs to the class of organic compounds known as acyl coas. These are organic compounds containing a coenzyme A substructure linked to an acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentAcyl CoAs
Alternative Parents
  • Coenzyme a or derivatives
  • Purine ribonucleoside 3',5'-bisphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside diphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Beta amino acid or derivatives
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Alkyl phosphate
  • 1,3-dicarbonyl compound
  • Imidolactam
  • N-acyl-amine
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Monosaccharide
  • Pyrimidine
  • Fatty amide
  • Phosphoric acid ester
  • Tetrahydrofuran
  • Imidazole
  • Heteroaromatic compound
  • Azole
  • Thiocarboxylic acid ester
  • Carbothioic s-ester
  • Secondary alcohol
  • Amino acid
  • Carboxamide group
  • Amino acid or derivatives
  • Secondary carboxylic acid amide
  • Organoheterocyclic compound
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Azacycle
  • Oxacycle
  • Carboxylic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic oxygen compound
  • Primary amine
  • Hydrocarbon derivative
  • Carbonyl group
  • Organosulfur compound
  • Organopnictogen compound
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Alcohol
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Physical Properties
Melting pointNot Available
Experimental Properties
Water SolubilityNot AvailablePhysProp
LogPNot AvailablePhysProp
Predicted Properties
Water Solubility3.8 g/LALOGPS
pKa (Strongest Acidic)0.82ChemAxon
pKa (Strongest Basic)4.2ChemAxon
Physiological Charge-5ChemAxon
Hydrogen Acceptor Count19ChemAxon
Hydrogen Donor Count10ChemAxon
Polar Surface Area400.93 ŲChemAxon
Rotatable Bond Count22ChemAxon
Refractivity178.55 m³·mol⁻¹ChemAxon
Polarizability75.33 ųChemAxon
Number of Rings3ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • mitochondrion
  • lipid particle
  • endoplasmic reticulum
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
Fatty acid biosynthesisPW002458 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylalanine metabolismPW002437 ThumbThumb?image type=greyscaleThumb?image type=simple
Pyruvate metabolismPW002447 ThumbThumb?image type=greyscaleThumb?image type=simple
beta-Alanine metabolismPW002381 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Biosynthesis of unsaturated fatty acidsec01040 Map01040
Fatty acid biosynthesisec00061 Map00061
Phenylalanine metabolismec00360 Map00360
Propanoate metabolismec00640 Map00640
Pyruvate metabolismec00620 Map00620
SMPDB Reactions
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonateADP + Pyrophosphate + malonyl-CoA
Palmityl-CoA + malonyl-CoA + hydronCarbon dioxide + 3-oxooctadecanoyl-CoA + Coenzyme A
Eicosanoyl-CoA + malonyl-CoA + hydronCoenzyme A + Carbon dioxide + 3-oxodocosanoyl-CoA
Docosanoyl-CoA + malonyl-CoA + hydronCoenzyme A + Carbon dioxide + 3-oxotetracosanoyl-CoA
stearoyl-CoA + hydron + malonyl-CoA3-oxoicosanoyl-CoA + Coenzyme A + Carbon dioxide
KEGG Reactions
Carbonic acid + Adenosine triphosphate + Acetyl-CoAphosphate + malonyl-CoA + hydron + ADP
malonyl-CoA + Caprylic acid + hydron + NADPHcapric acid + Carbon dioxide + NADP + water + Coenzyme A
capric acid + malonyl-CoA + hydron + NADPHlauric acid + Carbon dioxide + NADP + water + Coenzyme A
lauric acid + malonyl-CoA + hydron + NADPHCarbon dioxide + NADP + myristic acid + water + Coenzyme A
lauric acid + hydron + malonyl-CoA + oxygen + NADPHNADP + Carbon dioxide + Myristoleic acid + Coenzyme A + water
Intracellular ConcentrationsNot Available
Extracellular ConcentrationsNot Available
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-1912000130-da8095652669b99c8349JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0913000000-c93bc8aa729d6712ed08JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-2911000000-dee360a0ee5e683d782cJSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-001i-9830140570-8e78a24b9858f67c1579JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-001i-5910010010-97fdf25aafbfdff7c908JSpectraViewer
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900100000-33483ed329c67d3c4cacJSpectraViewer
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Dickson, R. C., Sumanasekera, C., Lester, R. L. (2006). "Functions and metabolism of sphingolipids in Saccharomyces cerevisiae." Prog Lipid Res 45:447-465.16730802
  • Hoja, U., Marthol, S., Hofmann, J., Stegner, S., Schulz, R., Meier, S., Greiner, E., Schweizer, E. (2004). "HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae." J Biol Chem 279:21779-21786.14761959
  • Kohlwein, S. D., Eder, S., Oh, C. S., Martin, C. E., Gable, K., Bacikova, D., Dunn, T. (2001). "Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae." Mol Cell Biol 21:109-125.11113186
  • Schneiter, R., Tatzer, V., Gogg, G., Leitner, E., Kohlwein, S. D. (2000). "Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae." J Bacteriol 182:3655-3660.10850979
  • Kastaniotis, A. J., Autio, K. J., Sormunen, R. T., Hiltunen, J. K. (2004). "Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphology." Mol Microbiol 53:1407-1421.15387819
Synthesis Reference:Hulsmann, W. C. Synthesis of malonyl coenzyme A from acetyl coenzyme A and oxalosuccinate in mitochondria. Biochimica et Biophysica Acta (1963), 77(3), 502-3.
External Links:
Pubchem Compound ID10663
Kegg IDC00083
ChemSpider ID24785730


General function:
Involved in fatty acid elongase activity
Specific function:
Involved in synthesis of 1,3-beta-glucan. Could be a subunit of 1,3-beta-glucan synthase. Could be also a component of the membrane bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Appears to be involved in the elongation of fatty acids up to 24 carbons. Appears to have the highest affinity for substrates with chain length less than 22 carbons
Gene Name:
Uniprot ID:
Molecular weight:
Acyl-CoA + malonyl-CoA → 3-oxoacyl-CoA + CoA + CO(2).
General function:
Involved in fatty acid elongase activity
Specific function:
May be a membrane bound enzyme involved in the highly specific elongation of saturated 14-carbon fatty acids (14:0) to 16-carbon species (16:0)
Gene Name:
Uniprot ID:
Molecular weight:
Acyl-CoA + malonyl-CoA → 3-oxoacyl-CoA + CoA + CO(2).
General function:
Involved in acyl carrier activity
Specific function:
Carrier of the growing fatty acid chain in fatty acid biosynthesis. May be involved in the synthesis of very-long-chain fatty acids. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in transferase activity
Specific function:
Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The beta subunit contains domains for:[acyl-carrier-protein] acetyltransferase and malonyltransferase, S-acyl fatty acid synthase thioesterase, enoyl-[acyl-carrier-protein] reductase, and 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase
Gene Name:
Uniprot ID:
Molecular weight:
Acetyl-CoA + n malonyl-CoA + 2n NADH + 2n NADPH → long-chain-acyl-CoA + n CoA + n CO(2) + 2n NAD(+) + 2n NADP(+).
Acetyl-CoA + [acyl-carrier-protein] → CoA + acetyl-[acyl-carrier-protein].
Malonyl-CoA + [acyl-carrier-protein] → CoA + malonyl-[acyl-carrier-protein].
(3R)-3-hydroxypalmitoyl-[acyl-carrier-protein] → hexadec-2-enoyl-[acyl-carrier-protein] + H(2)O.
Acyl-[acyl-carrier-protein] + NAD(+) → trans-2,3-dehydroacyl-[acyl-carrier-protein] + NADH.
Oleoyl-[acyl-carrier-protein] + H(2)O → [acyl-carrier-protein] + oleate.
General function:
Involved in magnesium ion binding
Specific function:
Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. The alpha subunit contains domains for:acyl carrier protein, 3- oxoacyl-[acyl-carrier-protein] reductase, and 3-oxoacyl-[acyl- carrier-protein] synthase. This subunit coordinates the binding of the six beta subunits to the enzyme complex
Gene Name:
Uniprot ID:
Molecular weight:
Acetyl-CoA + n malonyl-CoA + 2n NADH + 2n NADPH → long-chain-acyl-CoA + n CoA + n CO(2) + 2n NAD(+) + 2n NADP(+).
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] → 3-oxoacyl-[acyl-carrier-protein] + CO(2) + [acyl-carrier-protein].
(3R)-3-hydroxyacyl-[acyl-carrier-protein] + NADP(+) → 3-oxoacyl-[acyl-carrier-protein] + NADPH.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Catalyzes the rate-limiting reaction in the mitochondrial fatty acid synthesis (FAS) type II pathway. Responsible for the production of the mitochondrial malonyl-CoA, used for the biosynthesis of the cofactor lipoic acid. This protein carries three functions:biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase
Gene Name:
Uniprot ID:
Molecular weight:
ATP + acetyl-CoA + HCO(3)(-) → ADP + phosphate + malonyl-CoA.
ATP + biotin-[carboxyl-carrier-protein] + CO(2) → ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Carries out three functions:biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase
Gene Name:
Uniprot ID:
Molecular weight:
ATP + acetyl-CoA + HCO(3)(-) → ADP + phosphate + malonyl-CoA.
ATP + biotin-[carboxyl-carrier-protein] + CO(2) → ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
General function:
Involved in transferase activity
Specific function:
Involved in biosynthesis of fatty acids in mitochondria
Gene Name:
Uniprot ID:
Molecular weight:
Malonyl-CoA + [acyl-carrier-protein] → CoA + malonyl-[acyl-carrier-protein].