You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00276
NamePhosphoenolpyruvic acid
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionPhosphoenolpyruvate (PEP) is involved in glycolysis and gluconeogenesis. It is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells.
Structure
Thumb
Synonyms
  • 2-(phosphonooxy)-2-propenoate
  • 2-(phosphonooxy)acrylate
  • 2-hydroxy-2-propenoate (dihydrogen phosphate) (ester)
  • 2-hydroxy-2-propenoate phosphate (ester)
  • 2-hydroxy-Acrylic acid dihydrogen phosphate
  • 2-phosphonooxyprop-2-enoate
  • 2-phosphonooxyprop-2-enoic acid
  • O-phosphono-enol-pyruvate
  • P-enol-pyruvate
  • PEP
  • pep, phosphoenolpyruvic acid
  • Phosphoenolpyruvate
  • phosphoenolpyruvate(1-)
  • Phosphoenolpyruvic acid
  • 2-(Phosphonooxy)-2-propenoic acid
  • 2-PHOSPHOENOLPYRUVIC ACID
  • 2-PHOSPHOENOLPYRUVate
CAS number138-08-9
WeightAverage: 168.042
Monoisotopic: 167.982374404
InChI KeyDTBNBXWJWCWCIK-UHFFFAOYSA-N
InChIInChI=1S/C3H5O6P/c1-2(3(4)5)9-10(6,7)8/h1H2,(H,4,5)(H2,6,7,8)
IUPAC Name2-(phosphonooxy)prop-2-enoic acid
Traditional IUPAC Namephosphoenolpyruvic acid
Chemical FormulaC3H5O6P
SMILES[H]OC(=O)C(OP(=O)(O[H])O[H])=C([H])[H]
Chemical Taxonomy
Description belongs to the class of organic compounds known as phosphate esters. These are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassOrganic phosphoric acids and derivatives
Sub ClassPhosphate esters
Direct ParentPhosphate esters
Alternative Parents
Substituents
  • Phosphoric acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateSolid
Charge0
Melting pointNot Available
Experimental Properties
PropertyValueReference
Water SolubilityNot AvailablePhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
Water Solubility13.2 g/LALOGPS
logP-1.2ALOGPS
logP-0.64ChemAxon
logS-1.1ALOGPS
pKa (Strongest Acidic)0.76ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area104.06 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity30.13 m³·mol⁻¹ChemAxon
Polarizability11.57 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondrion
Organoleptic PropertiesNot Available
SMPDB Pathways
Ethanol fermentationPW002448 ThumbThumb?image type=greyscaleThumb?image type=simple
Glycolysis IPW002386 ThumbThumb?image type=greyscaleThumb?image type=simple
Pyruvate metabolismPW002447 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Citrate cycle (TCA cycle)ec00020 Map00020
Glycolysis / Gluconeogenesisec00010 Map00010
Methane metabolismec00680 Map00680
Phenylalanine, tyrosine and tryptophan biosynthesisec00400 Map00400
Pyruvate metabolismec00620 Map00620
SMPDB Reactions
2-phospho-D-glyceric acidPhosphoenolpyruvic acid + water
Adenosine triphosphate + Pyruvic acidADP + Phosphoenolpyruvic acid
Adenosine triphosphate + Pyruvic acidADP + Phosphoenolpyruvic acid
Adenosine triphosphate + Oxalacetic acidADP + Phosphoenolpyruvic acid
KEGG Reactions
D-Erythrose 4-phosphate + Phosphoenolpyruvic acid + waterphosphate + 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid
Phosphoenolpyruvic acid + 3-Phosphoshikimic acidphosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid
2-phospho-D-glyceric acidPhosphoenolpyruvic acid + water
Adenosine triphosphate + Oxalacetic acidPhosphoenolpyruvic acid + Carbon dioxide + ADP
Phosphoenolpyruvic acid + hydron + ADPPyruvic acid + Adenosine triphosphate
Concentrations
Intracellular Concentrations
Intracellular ConcentrationSubstrateGrowth ConditionsStrainCitation
15 ± 15 µM Synthetic medium with 2% glucoseaerobic;growing cellsBaker's yeastPMID: 6229402
15 ± 15 µM Synthetic medium with 2% galactoseaerobic;resting cellsBaker's yeastPMID: 6229402
Conversion Details Here
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Thevelein, J. M., Hohmann, S. (1995). "Trehalose synthase: guard to the gate of glycolysis in yeast?" Trends Biochem Sci 20:3-10.7878741
  • Schwartz, J. M., Kanehisa, M. (2006). "Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis." BMC Bioinformatics 7:186.16584566
  • Braus, G. H. (1991). "Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway." Microbiol Rev 55:349-370.1943992
  • Larimer, F. W., Morse, C. C., Beck, A. K., Cole, K. W., Gaertner, F. H. (1983). "Isolation of the ARO1 cluster gene of Saccharomyces cerevisiae." Mol Cell Biol 3:1609-1614.6355828
  • Burke, R. L., Tekamp-Olson, P., Najarian, R. (1983). "The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae." J Biol Chem 258:2193-2201.6185493
  • Teshiba, S., Furter, R., Niederberger, P., Braus, G., Paravicini, G., Hutter, R. (1986). "Cloning of the ARO3 gene of Saccharomyces cerevisiae and its regulation." Mol Gen Genet 205:353-357.2880280
  • Lagunas, R., Gancedo, C. (1983). "Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae." Eur J Biochem 137:479-483.6229402
Synthesis Reference:Simon, Ethan S.; Grabowski, Sven; Whitesides, George M. Preparation of phosphoenolpyruvate from D-(-)-3-phosphoglyceric acid for use in regeneration of ATP. Journal of the American Chemical Society (1989), 111(24), 8920-1.
External Links:
ResourceLink
CHEBI ID44897
HMDB IDHMDB00263
Pubchem Compound ID1005
Kegg IDC00074
ChemSpider ID980
FOODB IDFDB031112
WikipediaPhosphoenolpyruvic_acid
BioCyc IDPHOSPHO-ENOL-PYRUVATE

Enzymes

General function:
Involved in 3-dehydroquinate dehydratase activity
Specific function:
The AROM polypeptide catalyzes 5 consecutive enzymatic reactions in prechorismate polyaromatic amino acid biosynthesis
Gene Name:
ARO1
Uniprot ID:
P08566
Molecular weight:
174754.0
Reactions
3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate → 3-dehydroquinate + phosphate.
3-dehydroquinate → 3-dehydroshikimate + H(2)O.
Shikimate + NADP(+) → 3-dehydroshikimate + NADPH.
ATP + shikimate → ADP + shikimate 3-phosphate.
Phosphoenolpyruvate + 3-phosphoshikimate → phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate.
General function:
Involved in catalytic activity
Specific function:
Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
Gene Name:
ARO4
Uniprot ID:
P32449
Molecular weight:
39748.80078
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O → 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate.
General function:
Involved in catalytic activity
Specific function:
Stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D- arabino-heptulosonate-7-phosphate (DAHP)
Gene Name:
ARO3
Uniprot ID:
P14843
Molecular weight:
41069.5
Reactions
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O → 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate.
General function:
Involved in magnesium ion binding
Specific function:
ATP + pyruvate = ADP + phosphoenolpyruvate
Gene Name:
PYK1
Uniprot ID:
P00549
Molecular weight:
54544.10156
Reactions
ATP + pyruvate → ADP + phosphoenolpyruvate.
General function:
Involved in magnesium ion binding
Specific function:
May be used by cells under conditions in which the level of glycolytic flux is very low
Gene Name:
PYK2
Uniprot ID:
P52489
Molecular weight:
55194.69922
Reactions
ATP + pyruvate → ADP + phosphoenolpyruvate.
General function:
Involved in phosphoenolpyruvate carboxykinase (ATP) activity
Specific function:
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
Gene Name:
PCK1
Uniprot ID:
P10963
Molecular weight:
60982.69922
Reactions
ATP + oxaloacetate → ADP + phosphoenolpyruvate + CO(2).
General function:
Involved in magnesium ion binding
Specific function:
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
Gene Name:
ERR1
Uniprot ID:
Q12007
Molecular weight:
47327.10156
Reactions
2-phospho-D-glycerate → phosphoenolpyruvate + H(2)O.
General function:
Involved in magnesium ion binding
Specific function:
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
Gene Name:
ERR3
Uniprot ID:
P42222
Molecular weight:
47312.10156
Reactions
2-phospho-D-glycerate → phosphoenolpyruvate + H(2)O.
General function:
Involved in magnesium ion binding
Specific function:
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
Gene Name:
ENO1
Uniprot ID:
P00924
Molecular weight:
46815.69922
Reactions
2-phospho-D-glycerate → phosphoenolpyruvate + H(2)O.
General function:
Involved in magnesium ion binding
Specific function:
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
Gene Name:
ENO2
Uniprot ID:
P00925
Molecular weight:
46913.69922
Reactions
2-phospho-D-glycerate → phosphoenolpyruvate + H(2)O.

Transporters

General function:
Involved in binding
Specific function:
Transport of citrate across inner mitochondrial membrane
Gene Name:
CTP1
Uniprot ID:
P38152
Molecular weight:
32173.0