You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00235
NameOxalacetic acid
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionOxalacetic acid, also known as keto-oxaloacetate or 2-oxobutanedioate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. Oxalacetic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Oxalacetic acid exists in all living species, ranging from bacteria to humans.
Structure
Thumb
Synonyms
  • 2-Ketosuccinate
  • 2-Ketosuccinic acid
  • 2-Oxobutanedioate
  • 2-Oxobutanedioic acid
  • 2-Oxosuccinate
  • 2-Oxosuccinic acid
  • a-Ketosuccinate
  • a-Ketosuccinic acid
  • alpha-Ketosuccinate
  • alpha-Ketosuccinic acid
  • Ketosuccinate
  • Ketosuccinic acid
  • OAA
  • oxalacetate
  • Oxaloacetate
  • oxaloacetate dianion
  • Oxaloacetic acid
  • Oxaloethanoate
  • Oxaloethanoic acid
  • oxobutanedioate
  • oxobutanedioic acid, ion(2-)
  • Oxosuccinate
  • Oxosuccinic acid
  • 3-Carboxy-3-oxopropanoic acid
  • Keto-succinic acid
  • Oxobutanedioic acid
  • Keto-oxaloacetate
  • 3-Carboxy-3-oxopropanoate
  • Keto-succinate
  • Keto-oxaloacetic acid
  • Acid, oxaloacetic
  • Acid, oxalacetic
  • 2 Ketosuccinic acid
  • 2 oxo Butanedioic acid
  • 2-oxo-Butanedioic acid
CAS number328-42-7
WeightAverage: 132.0716
Monoisotopic: 132.005873238
InChI KeyKHPXUQMNIQBQEV-UHFFFAOYSA-N
InChIInChI=1S/C4H4O5/c5-2(4(8)9)1-3(6)7/h1H2,(H,6,7)(H,8,9)
IUPAC Name2-oxobutanedioic acid
Traditional IUPAC Nameoxalacetate
Chemical FormulaC4H4O5
SMILES[H]OC(=O)C(=O)C([H])([H])C(=O)O[H]
Chemical Taxonomy
Description belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassKeto acids and derivatives
Sub ClassShort-chain keto acids and derivatives
Direct ParentShort-chain keto acids and derivatives
Alternative Parents
Substituents
  • Beta-keto acid
  • Short-chain keto acid
  • Alpha-keto acid
  • Beta-hydroxy ketone
  • Dicarboxylic acid or derivatives
  • 1,3-dicarbonyl compound
  • Alpha-hydroxy ketone
  • Ketone
  • Carboxylic acid
  • Carboxylic acid derivative
  • Carbonyl group
  • Organooxygen compound
  • Organic oxide
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateSolid
Charge0
Melting point161 °C
Experimental Properties
PropertyValueReference
Water Solubility134 mg/mL [HMP experimental]PhysProp
LogPNot AvailablePhysProp
Predicted Properties
PropertyValueSource
Water Solubility57.1 g/LALOGPS
logP-0.68ALOGPS
logP-0.042ChemAxon
logS-0.36ALOGPS
pKa (Strongest Acidic)2.41ChemAxon
pKa (Strongest Basic)-9.9ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area91.67 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity24.33 m³·mol⁻¹ChemAxon
Polarizability10.06 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • extracellular
  • mitochondrion
  • peroxisome
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
Asparagine metabolismPW002274 ThumbThumb?image type=greyscaleThumb?image type=simple
Aspartate metabolismPW002375 ThumbThumb?image type=greyscaleThumb?image type=simple
Citric Acid CyclePW000952 ThumbThumb?image type=greyscaleThumb?image type=simple
Citric Acid Cycle 1434561204PW000970 ThumbThumb?image type=greyscaleThumb?image type=simple
Glyoxylate cyclePW002419 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Pyruvate metabolismec00620 Map00620
SMPDB Reactions
Acetyl-CoA + water + Oxalacetic acidCitric acid + Coenzyme A
(S)-Malic acid + NADOxalacetic acid + NADH + hydron
Oxalacetic acid + hydron + NADH(S)-Malic acid + NAD
Adenosine triphosphate + Pyruvic acid + Hydrogen carbonateADP + phosphate + Oxalacetic acid
NADH + hydron + Oxalacetic acid(S)-Malic acid + NAD
KEGG Reactions
propionyl-CoA + water + Oxalacetic acid(2S,3S)-2-Methylcitric acid + hydron + Coenzyme A
L-Aspartic acid + Oxoglutaric acidL-Glutamic acid + Oxalacetic acid
Acetyl-CoA + water + Oxalacetic acidhydron + Citric acid + Coenzyme A
NAD + (S)-malate(2-)NADH + hydron + Oxalacetic acid
Adenosine triphosphate + Oxalacetic acidPhosphoenolpyruvic acid + Carbon dioxide + ADP
Concentrations
Intracellular Concentrations
Intracellular ConcentrationSubstrateGrowth ConditionsStrainCitation
25 ± 25 µM Minimal medium supplemented with ammonia salts and (glucose or galactose)aerobic;growing cellsBaker's yeastPMID: 4578278
Conversion Details Here
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Luttik, M. A., Kotter, P., Salomons, F. A., van der Klei, I. J., van Dijken, J. P., Pronk, J. T. (2000). "The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism." J Bacteriol 182:7007-7013.11092862
  • Przybyla-Zawislak, B., Gadde, D. M., Ducharme, K., McCammon, M. T. (1999). "Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes." Genetics 152:153-166.10224250
  • Velot, C., Lebreton, S., Morgunov, I., Usher, K. C., Srere, P. A. (1999). "Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae." Biochemistry 38:16195-16204.10587442
  • Verleur, N., Elgersma, Y., Van Roermund, C. W., Tabak, H. F., Wanders, R. J. (1997). "Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae." Eur J Biochem 247:972-980.9288922
  • Singh, J., Kumar, D., Ramakrishnan, N., Singhal, V., Jervis, J., Garst, J. F., Slaughter, S. M., DeSantis, A. M., Potts, M., Helm, R. F. (2005). "Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration." Appl Environ Microbiol 71:8752-8763.16332871
  • Jia, Y. K., Becam, A. M., Herbert, C. J. (1997). "The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase." Mol Microbiol 24:53-59.9140965
  • Gancedo, J. M., Gancedo, C. (1973). "Concentrations of intermediary metabolites in yeast." Biochimie 55:205-211.4578278
Synthesis Reference:Heidelberger, Charles; Hurlbert, Robert B. The synthesis of oxalacetic acid-I-C14 and orotic acid-6-C14. Journal of the American Chemical Society (1950), 72 4704-6.
External Links:
ResourceLink
CHEBI ID30744
HMDB IDHMDB00223
Pubchem Compound ID970
Kegg IDC00036
ChemSpider ID945
FOODB IDFDB001479
WikipediaOxaloacetic_acid
BioCyc IDOXALACETIC_ACID

Enzymes

General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT3
Uniprot ID:
P43635
Molecular weight:
53810.69922
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
propanoyl-CoA + H2O + oxaloacetate → (2R,3S)-2-hydroxybutane-1,2,3-tricarboxylate + CoA
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT2
Uniprot ID:
P08679
Molecular weight:
51412.89844
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
General function:
Involved in transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer
Specific function:
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
Gene Name:
CIT1
Uniprot ID:
P00890
Molecular weight:
53359.60156
Reactions
Acetyl-CoA + H(2)O + oxaloacetate → citrate + CoA.
General function:
Involved in electron carrier activity
Specific function:
Could be a fumarate reductase
Gene Name:
OSM1
Uniprot ID:
P21375
Molecular weight:
55064.80078
Reactions
General function:
Involved in catalytic activity
Specific function:
Exhibits dehydratase activity specific for L-threo-3- hydroxyaspartate
Gene Name:
SRY1
Uniprot ID:
P36007
Molecular weight:
34898.69922
Reactions
Threo-3-hydroxy-L-aspartate → oxaloacetate + NH(3).
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second
Gene Name:
PYC1
Uniprot ID:
P11154
Molecular weight:
130098.0
Reactions
ATP + pyruvate + HCO(3)(-) → ADP + phosphate + oxaloacetate.
General function:
Involved in acetyl-CoA carboxylase activity
Specific function:
Carries out three functions:biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase
Gene Name:
FAS3
Uniprot ID:
Q00955
Molecular weight:
250351.0
Reactions
ATP + acetyl-CoA + HCO(3)(-) → ADP + phosphate + malonyl-CoA.
ATP + biotin-[carboxyl-carrier-protein] + CO(2) → ADP + phosphate + carboxy-biotin-[carboxyl-carrier-protein].
General function:
Involved in phosphoenolpyruvate carboxykinase (ATP) activity
Specific function:
ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO(2)
Gene Name:
PCK1
Uniprot ID:
P10963
Molecular weight:
60982.69922
Reactions
ATP + oxaloacetate → ADP + phosphoenolpyruvate + CO(2).
General function:
Involved in catalytic activity
Specific function:
Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second
Gene Name:
PYC2
Uniprot ID:
P32327
Molecular weight:
130166.0
Reactions
ATP + pyruvate + HCO(3)(-) → ADP + phosphate + oxaloacetate.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
The isoenzyme MDH2 may function primarily in the glyoxylate cycle
Gene Name:
MDH2
Uniprot ID:
P22133
Molecular weight:
40730.39844
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
(S)-malate + NAD(+) = pyruvate + CO(2) + NADH
Gene Name:
MAE1
Uniprot ID:
P36013
Molecular weight:
74375.29688
Reactions
(S)-malate + NAD(+) → pyruvate + CO(2) + NADH.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
(S)-malate + NAD(+) = oxaloacetate + NADH
Gene Name:
MDH3
Uniprot ID:
P32419
Molecular weight:
37185.89844
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol
Gene Name:
AAT1
Uniprot ID:
Q01802
Molecular weight:
51795.10156
Reactions
L-aspartate + 2-oxoglutarate → oxaloacetate + L-glutamate.
General function:
Involved in transferase activity, transferring nitrogenous groups
Specific function:
Plays a key role in amino acid metabolism
Gene Name:
AAT2
Uniprot ID:
P23542
Molecular weight:
46057.30078
Reactions
L-aspartate + 2-oxoglutarate → oxaloacetate + L-glutamate.
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
Specific function:
(S)-malate + NAD(+) = oxaloacetate + NADH
Gene Name:
MDH1
Uniprot ID:
P17505
Molecular weight:
35649.60156
Reactions
(S)-malate + NAD(+) → oxaloacetate + NADH.

Transporters

General function:
Involved in binding
Specific function:
Transports oxaloacetate and sulfate
Gene Name:
OAC1
Uniprot ID:
P32332
Molecular weight:
35152.80078