You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Yeast Metabolome Database.
Identification
YMDB IDYMDB00214
NameL-Threonine
SpeciesSaccharomyces cerevisiae
StrainBaker's yeast
DescriptionThreonine (abbreviated as Thr or T) is an alpha-amino acid. The L-isomer is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. It is classified as a nonpolar, branched chain amino acid, because of the hydrophobic nature of the alcoholic side chain. Together with serine, threonine is one of two proteinogenic amino acids bearing an alcohol group. It is also one of two common amino acids that bear a chiral side chain, along with isoleucine. The threonine residue is susceptible to numerous posttranslational modifications. The hydroxy side-chain can undergo O-linked glycosylation. In addition, threonine residues undergo phosphorylation through the action of a threonine kinase. threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. Homoserine undergoes O-phosphorylation; this phosphate ester undergoes hydrolysis concomitant with relocation of the OH group. Enzymes involved in a typical biosynthesis of threonine include: 1) aspartokinase; 2) beta-aspartate semialdehyde dehydrogenase; 3) homoserine dehydrogenase; 4) homoserine kinase and 5) threonine synthase. Threonine can be catabolized in one of three pathways. One process involves glycine-independent serine/threonine dehydratase yielding alpha-ketobutyrate which is further catabolized to propionyl-CoA and finally the TCA cycle intermediate, succinyl-CoA. The second pathway of threonine catabolism utilizes serine hydroxymethyltransferase. The products of this reaction are acetyl-CoA and glycine. The glycine can be converted to serine via the same enzyme and the serine is then catabolized yielding pyruvate and NH4+. Thus, via this catabolic pathway threonine yields ketogenic and glucogenic byproducts. A third pathway occurs in the mitochondria and is initiated by threonine dehydrogenase yielding alpha-amino-beta-ketobutyrate (2-amino-3-ketobutyrate). The 2-amino-3-ketobutyrate is either converted to acetyl-CoA and glycine, via the action of 2-amino-3-ketobutyrate coenzyme A ligase (also called glycine C-acetyltransfease), or it can spontaneously degrade to aminoacetone which is converted to pyruvate.
Structure
Thumb
Synonyms
  • (2S,3R)-(-)-Threonine
  • (2S,3R)-2-Amino-3-hydroxybutyrate
  • (2S,3R)-2-Amino-3-hydroxybutyric acid
  • (R-(R*,S*))-2-Amino-3-hydroxybutanoate
  • (R-(R*,S*))-2-Amino-3-hydroxybutanoic acid
  • (S)-Threonine
  • [R-(R*,S*)]-2-amino-3-hydroxy-Butanoate
  • [R-(R*,S*)]-2-amino-3-hydroxy-Butanoic acid
  • [R-(R*,S*)]-2-Amino-3-hydroxybutanoate
  • [R-(R*,S*)]-2-Amino-3-hydroxybutanoic acid
  • 2-Amino-3-hydroxybutanoate
  • 2-Amino-3-hydroxybutanoic acid
  • 2-Amino-3-hydroxybutyrate
  • 2-Amino-3-hydroxybutyric acid
  • L-(-)-Threonine
  • L-2-Amino-3-hydroxybutyrate
  • L-2-Amino-3-hydroxybutyric acid
  • L-alpha-Amino-beta-hydroxybutyrate
  • L-alpha-Amino-beta-hydroxybutyric acid
  • Threonin
  • Threonine
  • (2S)-Threonine
  • (2S,3R)-2-Amino-3-hydroxybutanoic acid
  • L-Threonin
  • T
  • Thr
  • (2S,3R)-2-Amino-3-hydroxybutanoate
  • L-a-Amino-b-hydroxybutyrate
  • L-a-Amino-b-hydroxybutyric acid
  • L-Α-amino-β-hydroxybutyrate
  • L-Α-amino-β-hydroxybutyric acid
  • L Threonine
CAS number72-19-5
WeightAverage: 119.1192
Monoisotopic: 119.058243159
InChI KeyAYFVYJQAPQTCCC-GBXIJSLDSA-N
InChIInChI=1S/C4H9NO3/c1-2(6)3(5)4(7)8/h2-3,6H,5H2,1H3,(H,7,8)/t2-,3+/m1/s1
IUPAC Name(2S,3R)-2-amino-3-hydroxybutanoic acid
Traditional IUPAC NameL-threonine
Chemical FormulaC4H9NO3
SMILES[H]OC(=O)[C@@]([H])(N([H])[H])[C@]([H])(O[H])C([H])([H])[H]
Chemical Taxonomy
Description belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentL-alpha-amino acids
Alternative ParentsNot Available
SubstituentsNot Available
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Physical Properties
StateSolid
Charge0
Melting point256 °C
Experimental Properties
PropertyValueReference
Water Solubility97 mg/mL at 25 oC [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP-2.94 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility477 g/LALOGPS
logP-3ALOGPS
logP-3.5ChemAxon
logS0.6ALOGPS
pKa (Strongest Acidic)2.21ChemAxon
pKa (Strongest Basic)9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area83.55 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity26.46 m³·mol⁻¹ChemAxon
Polarizability11.08 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations
  • extracellular
  • mitochondrion
  • cytoplasm
Organoleptic PropertiesNot Available
SMPDB Pathways
glycine metabolismPW002398 ThumbThumb?image type=greyscaleThumb?image type=simple
isoleucine biosynthesisPW002476 ThumbThumb?image type=greyscaleThumb?image type=simple
threonine metabolismPW002401 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways
Glycine, serine and threonine metabolismec00260 Map00260
Porphyrin and chlorophyll metabolismec00860 Map00860
Valine, leucine and isoleucine biosynthesisec00290 Map00290
SMPDB Reactions
L-ThreonineAcetaldehyde + Glycine
O-Phosphohomoserine + waterphosphate + L-Threonine
L-Threonine + NADhydron + NADH + L-2-amino-3-oxobutanoic acid
L-Threoninehydron + water + (2Z)-2-aminobut-2-enoate
KEGG Reactions
L-ThreonineAmmonium + 2-Ketobutyric acid
L-ThreonineGlycine + Acetaldehyde
water + O-Phosphohomoserinephosphate + L-Threonine
Adenosine triphosphate + L-Threonine + tRNA(Thr) → Adenosine monophosphate + Pyrophosphate + Thr-tRNA(Thr)
Concentrations
Intracellular Concentrations
Intracellular ConcentrationSubstrateGrowth ConditionsStrainCitation
4219 ± 84 µM YPD mediaaerobicBaker's yeastPMID: 7654310
2067 ± 41 µM YPG mediaaerobicBaker's yeastPMID: 7654310
775 ± 15 µM SD mediaaerobicBaker's yeastPMID: 7654310
603 ± 12 µM SG mediaaerobicBaker's yeastPMID: 7654310
2841 ± 57 µM M (molasses)aerobicBaker's yeastPMID: 7654310
1206 ± 24 µM MA (molasses)aerobicBaker's yeastPMID: 7654310
3616 ± 72 µM MB (molasses)aerobicBaker's yeastPMID: 7654310
1206 ± 24 µM MAB (molasses)aerobicBaker's yeastPMID: 7654310
1274 ± 64 µM YEB media with 0.5 mM glucoseaerobicBaker's yeastExperimentally Determined
Not Available
2210 ± 210 µM Synthetic medium with 20 g/L glucoseaerobicBaker's yeastPMID: 12584756
Conversion Details Here
Extracellular ConcentrationsNot Available
Spectra
Spectra
References
References:
  • Martinez-Force, E., Benitez, T. (1995). "Effects of varying media, temperature, and growth rates on the intracellular concentrations of yeast amino acids." Biotechnol Prog 11:386-392.7654310
  • UniProt Consortium (2011). "Ongoing and future developments at the Universal Protein Resource." Nucleic Acids Res 39:D214-D219.21051339
  • Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C., Stelzer, M., Thiele, J., Schomburg, D. (2011). "BRENDA, the enzyme information system in 2011." Nucleic Acids Res 39:D670-D676.21062828
  • Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Bluthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novere, N., Li, P., Liebermeister, W., Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasic, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kirdar, B., Penttila, M., Klipp, E., Palsson, B. O., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J., Kell, D. B. (2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology." Nat Biotechnol 26:1155-1160.18846089
  • Ryan, E. D., Kohlhaw, G. B. (1974). "Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast." J Bacteriol 120:631-637.4616942
  • Cherest, H., Eichler, F., Robichon-Szulmajster, H. (1969). "Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae." J Bacteriol 97:328-336.5764336
  • Hans, M. A., Heinzle, E., Wittmann, C. (2003). "Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae." Biotechnol Bioeng 82:143-151.12584756
  • Nookaew, I., Jewett, M. C., Meechai, A., Thammarongtham, C., Laoteng, K., Cheevadhanarak, S., Nielsen, J., Bhumiratana, S. (2008). "The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism." BMC Syst Biol 2:71.18687109
  • Ramos, C., Calderon, I. L. (1994). "Biochemical evidence that the Saccharomyces cerevisiae THR4 gene encodes threonine synthetase." FEBS Lett 351:357-359.8082795
  • Liu, J. Q., Nagata, S., Dairi, T., Misono, H., Shimizu, S., Yamada, H. (1997). "The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific L-threonine aldolase that catalyzes cleavage of L-allo-threonine and L-threonine to glycine--expression of the gene in Escherichia coli and purification and characterization of the enzyme." Eur J Biochem 245:289-293.9151955
  • Castrillo, J. I., Zeef, L. A., Hoyle, D. C., Zhang, N., Hayes, A., Gardner, D. C., Cornell, M. J., Petty, J., Hakes, L., Wardleworth, L., Rash, B., Brown, M., Dunn, W. B., Broadhurst, D., O'Donoghue, K., Hester, S. S., Dunkley, T. P., Hart, S. R., Swainston, N., Li, P., Gaskell, S. J., Paton, N. W., Lilley, K. S., Kell, D. B., Oliver, S. G. (2007). "Growth control of the eukaryote cell: a systems biology study in yeast." J Biol 6:4.17439666
Synthesis Reference: Fujita, Chuzo; Nara, Takashi; Samejima, Hirotoshi; Kinoshita, Shukuo. L-Threonine fermentation. I. Microbial conversion of L-homoserine to L-threonine. Nippon Nogei Kagaku Kaishi (1965), 39(6), 2
External Links:
ResourceLink
CHEBI ID16857
HMDB IDHMDB00167
Pubchem Compound ID6288
Kegg IDC00188
ChemSpider ID24532173
FOODB IDFDB011999
WikipediaThreonine
BioCyc IDTHR

Enzymes

General function:
Involved in lyase activity
Specific function:
Catalyzes the cleavage of L-allo-threonine and L- threonine to glycine and acetaldehyde
Gene Name:
GLY1
Uniprot ID:
P37303
Molecular weight:
42814.60156
Reactions
L-threonine → glycine + acetaldehyde.
L-allo-threonine → glycine + acetaldehyde.
General function:
Involved in catalytic activity
Specific function:
L-threonine = 2-oxobutanoate + NH(3)
Gene Name:
ILV1
Uniprot ID:
P00927
Molecular weight:
63830.69922
Reactions
L-threonine → 2-oxobutanoate + NH(3).
General function:
Involved in catalytic activity
Specific function:
L-serine = pyruvate + NH(3)
Gene Name:
CHA1
Uniprot ID:
P25379
Molecular weight:
39301.0
Reactions
L-serine → pyruvate + NH(3).
L-threonine → 2-oxobutanoate + NH(3).
General function:
Involved in catalytic activity
Specific function:
Exhibits dehydratase activity specific for L-threo-3- hydroxyaspartate
Gene Name:
SRY1
Uniprot ID:
P36007
Molecular weight:
34898.69922
Reactions
Threo-3-hydroxy-L-aspartate → oxaloacetate + NH(3).
General function:
Involved in nucleotide binding
Specific function:
ATP + L-threonine + tRNA(Thr) = AMP + diphosphate + L-threonyl-tRNA(Thr)
Gene Name:
MST1
Uniprot ID:
P07236
Molecular weight:
54091.60156
Reactions
ATP + L-threonine + tRNA(Thr) → AMP + diphosphate + L-threonyl-tRNA(Thr).
General function:
Involved in nucleotide binding
Specific function:
ATP + L-threonine + tRNA(Thr) = AMP + diphosphate + L-threonyl-tRNA(Thr)
Gene Name:
THS1
Uniprot ID:
P04801
Molecular weight:
84519.79688
Reactions
ATP + L-threonine + tRNA(Thr) → AMP + diphosphate + L-threonyl-tRNA(Thr).
General function:
Involved in zinc ion binding
Specific function:
NADP-dependent alcohol dehydrogenase with a broad substrate specificity
Gene Name:
ADH6
Uniprot ID:
Q04894
Molecular weight:
39617.30078
Reactions
An alcohol + NADP(+) → an aldehyde + NADPH.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine
Gene Name:
THR4
Uniprot ID:
P16120
Molecular weight:
57473.69922
Reactions
O-phospho-L-homoserine + H(2)O → L-threonine + phosphate.

Transporters

General function:
Involved in transport
Specific function:
Permease for various amino acids as well as for GABA. Can also transport L-cysteine and beta-alanine
Gene Name:
GAP1
Uniprot ID:
P19145
Molecular weight:
65654.89844
General function:
Involved in transport
Specific function:
High affinity transport of glutamine. Also transport Leu, Ser, Thr, Cys, Met and Asn
Gene Name:
GNP1
Uniprot ID:
P48813
Molecular weight:
73597.39844
General function:
Involved in transport
Specific function:
High-affinity transport of valine and tyrosine. Low- affinity transport of tryptophan. Can also transport L-cysteine
Gene Name:
TAT1
Uniprot ID:
P38085
Molecular weight:
68756.89844
General function:
Involved in transport
Specific function:
Involved in transport of isoleucine, leucine, valine, cysteine, methionine, phenylalanine, tyrosine and tryptophan
Gene Name:
BAP3
Uniprot ID:
P41815
Molecular weight:
67364.39844
General function:
Involved in transport
Specific function:
Broad substrate range permease which transports asparagine and glutamine with intermediate specificity. Also transports Ala, Cys, Gly, Ile, Leu, Met, Phe, Ser, Thr, Tyr and Val. Important for the utilization of amino acids as a nitrogen source
Gene Name:
AGP1
Uniprot ID:
P25376
Molecular weight:
69670.70313